Istituto Superiore di Sanità, Comparative Toxicology and Ecotoxicology Department, Rome, Italy.
Environ Toxicol Pharmacol. 1996 Oct 15;2(2-3):233-42. doi: 10.1016/S1382-6689(96)00060-9.
We have comparatively studied in vitro the oxidative and reductive pathways of chloroform metabolism in hepatic and renal microsomes of rodent strains used for carcinogenicity testing (B6C3F1 mice, Osborne Mendel and Sprague Dawley rats). To this aim we exploited the regioselective binding of phosgene to phospholipid (PL) polar heads and of dichloromethyl radical to PL fatty acyl chains, using a method based on the chemical transmethylation of PL adducts, followed by phase partitioning of the resulting products (De Biasi et al., 1992). The analysis of results let us to conclude at first that a (14)C label partitioning by 89.2 (±6.5)% or 13.7 (±5.0)% in the aqueous phase is typical of the PL adduct with phosgene (PL-PHOS) or with dichloromethyl radical (PL-RAD), respectively. Metabolism of 0.1 mM CHCl(3) was mainly oxidative in all the samples, being hepatic microsomes more active than renal ones by about one order of magnitude and levels of CHCl(3)-derived PL adducts in B6C3F1 mouse liver microsomes higher than in rat samples. At 5 mM CHCl(3), total levels of PL adducts in renal microsomes reached levels almost similar to those found in liver microsomes. However, while B6C3F1 mouse kidney microsomes produced both reactive metabolites, similarly as the hepatic samples, Osborne Mendel rat kidney microsomes bioactivated CHCl(3) only reductiveiy, producing the radical. The relevance of this finding depends on the fact that phosgene is known to be the major cause of CHCl(3) toxicity, based on data with the rat liver and mouse liver and kidney, while nephrotoxicity in rats occurs with minimal production of COCl(2). Chloroform reductive bioactivation may therefore provide a reasonable explanation for the toxicity of chloroform to the rat kidney. The same finding may be of interest in elucidating the metabolic reasons of the chloroform-induced kidney tumors in Osborne Mendel rats.
我们比较研究了在体外氯仿代谢的氧化和还原途径在用于致癌性测试的啮齿动物品系(B6C3F1 小鼠,Osborne Mendel 和 Sprague Dawley 大鼠)的肝和肾微粒体。为此,我们利用光气与磷脂(PL)极性头的区域选择性结合和二氯甲基自由基与 PL 脂肪酸链的区域选择性结合,使用基于 PL 加合物的化学转甲基化的方法,然后对所得产物进行相分离(De Biasi 等人,1992 年)。分析结果使我们首先得出结论,(14)C 标记的分配率为 89.2(±6.5)%或 13.7(±5.0)%分别是光气(PL-PHOS)或二氯甲基自由基(PL-RAD)与 PL 加合物的典型特征。在所有样品中,0.1mMCHCl(3)的代谢主要是氧化的,肝微粒体比肾微粒体活性高约一个数量级,B6C3F1 小鼠肝微粒体中 CHCl(3)衍生的 PL 加合物水平高于大鼠样品。在 5mMCHCl(3)时,肾微粒体中 PL 加合物的总水平达到与肝微粒体中几乎相似的水平。然而,虽然 B6C3F1 小鼠肾微粒体产生两种反应性代谢物,但与肝样品相似,Osborne Mendel 大鼠肾微粒体仅通过还原生物激活 CHCl(3),产生自由基。这一发现的相关性取决于以下事实,即根据大鼠肝和小鼠肝和肾的数据,光气是 CHCl(3)毒性的主要原因,而在大鼠中发生肾毒性时,COCl(2)的产生最少。因此,氯仿的还原生物活化可能为氯仿对大鼠肾脏的毒性提供了合理的解释。这一发现可能有助于阐明 Osborne Mendel 大鼠中氯仿诱导的肾脏肿瘤的代谢原因。