Suppr超能文献

pH stability of the stromelysin-1 catalytic domain and its mechanism of interaction with a glyoxal inhibitor.

作者信息

Howe Nicole, Ceruso Mariangela, Spink Edward, Malthouse J Paul G

机构信息

UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland.

出版信息

Biochim Biophys Acta. 2011 Oct;1814(10):1394-403. doi: 10.1016/j.bbapap.2011.07.004. Epub 2011 Jul 18.

Abstract

The stromelysin-1 catalytic domain(83-247) (SCD) is stable for at least 16 h at pHs 6.0-8.4. At pHs 5.0 and 9.0 there is exponential irreversible denaturation with half lives of 38 and 68 min respectively. At pHs 4.5 and 10.0 irreversible denaturation is biphasic. At 25°C, C-terminal truncation of stromelysin-1 decreases the stability of the stromelysin-1 catalytic domain at pH values >8.4 and <6.0. We describe the conversion of the carboxylate group of (βR)-β-[[[(1S)-1-[[[(1S)-2-Methoxy-1-phenylethyl]amino]carbonyl]-2,2-dimethylpropyl]amino]carbonyl]-2-methyl-[1,1'-biphenyl]-4-hexanoic acid (UK-370106-COOH) a potent inhibitor of the metalloprotease stromelysin-1 to a glyoxal group (UK-370106-CO(13)CHO). At pH 5.5-6.5 the glyoxal inhibitor is a potent inhibitor of stromelysin-1 (K(i)=1μM). The aldehyde carbon of the glyoxal inhibitor was enriched with carbon-13 and using carbon-13 NMR we show that the glyoxal aldehyde carbon is fully hydrated when it is in aqueous solutions (90.4ppm) and also when it is bound to SCD (92.0ppm). We conclude that the hemiacetal hydroxyl groups of the glyoxal inhibitor are not ionised when the glyoxal inhibitor is bound to SCD. The free enzyme pK(a) values associated with inhibitor binding were 5.9 and 6.2. The formation and breakdown of the signal at ~92ppm due to the bound UK-370106-CO(13)CHO inhibitor depends on pK(a) values of 5.8 and 7.8 respectively. No strong hydrogen bonds are present in free SCD or in SCD-inhibitor complexes. We conclude that the inhibitor glyoxal group is not directly coordinated to the catalytic zinc atom of SCD.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验