Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
J Contam Hydrol. 2011 Sep 25;126(1-2):45-60. doi: 10.1016/j.jconhyd.2011.06.003. Epub 2011 Jul 2.
The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO(2)(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO(3)(-) and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.
放射性废物地质处置库的性能评估需要量化膨润土工程屏障的地球化学演化。该屏障将暴露于热(T)、水动力(H)、机械(M)和化学(C)过程的耦合作用下。本文提出了 FEBEX(全规模工程屏障实验)原位试验的 THC 耦合模型,该模型考虑了膨润土的膨胀以及化学和热渗透作用。模型结果证明了热渗透和膨润土膨胀对膨润土屏障的地球化学演化的重要性,而化学渗透则几乎无关紧要。该模型已经过原位试验中拆除加热器 1 后收集的数据进行了测试。该模型相当合理地再现了测量的温度、相对湿度、含水量和推断的地球化学数据。然而,它无法模拟加热器-膨润土和膨润土-花岗岩界面处的溶质浓度,因为模型没有考虑膨润土的体积变化、CO(2)(g)的脱气作用以及蒸汽从膨润土向花岗岩的传输。推断的 HCO(3)(-)和 pH 数据不能仅通过溶质传输、方解石溶解以及表面络合的质子化/去质子化来解释,这表明这些数据可能还受到其他反应的影响。