The Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
Biosens Bioelectron. 2011 Sep 15;27(1):25-33. doi: 10.1016/j.bios.2011.05.026. Epub 2011 Jun 21.
We developed a new instrumental method by which human melanoma cells (LU1205) are sonoporated via radiation pressures exerted by highly-confined ultrasonic waves produced by high lateral-resolution ultrasonic micro-transducer arrays (UMTAs). The method enables cellular-level site-specific sonoporation within the cell monolayer due to UMTAs and can be applicable in the delivery of drugs and gene products in cellular assays. In this method, cells are seeded on the biochip that employs UMTAs for high spatial resolution and specificity. UMTAs are driven by 30-MHz sinusoidal signals and the resulting radiation pressures induce sonoporation in the targeted cells. The sonoporation degree and the effective lateral resolution of UMTAs are determined by performing fluorescent microscopy and analysis of carboxylic-acid-derivatized CdSe/ZnS quantum dots passively transported into the cells. Models representing the transducer-generated ultrasound radiation pressure, the ultrasound-inflicted cell membrane wound, and the transmembrane transport through the wound are developed to determine the ultrasound-pressure-dependent wound size and enhanced cellular uptake of nanoparticles. Model-based calculations show that the effective wound size and cellular uptake of nanoparticles increase linearly with increasing ultrasound pressure (i.e., at applied radiation pressures of 0.21, 0.29, and 0.40 MPa, the ultrasound-induced initial effective wound radii are 150, 460, and 650 nm, respectively, and the post-sonoporation intracellular quantum-dot concentrations are 7.8, 22.8, and 29.9 nM, respectively) and the threshold pressure required to induce sonoporation in LU1205 cells is ∼0.12 MPa.
我们开发了一种新的仪器方法,通过高横向分辨率超声微换能器阵列(UMTA)产生的高度约束超声波的辐射压力对人黑色素瘤细胞(LU1205)进行声孔作用。该方法由于 UMTAs 能够在细胞单层内实现细胞水平的特定部位声孔作用,因此可适用于细胞分析中的药物和基因产物的传递。在该方法中,细胞被接种在使用 UMTAs 实现高空间分辨率和特异性的生物芯片上。UMTA 由 30MHz 正弦信号驱动,产生的辐射压力会在目标细胞中诱导声孔作用。通过荧光显微镜和分析被动运输入细胞的羧酸衍生 CdSe/ZnS 量子点来确定声孔程度和 UMTAs 的有效横向分辨率。开发了代表换能器产生的超声辐射压力、超声引起的细胞膜伤口以及通过伤口的跨膜传输的模型,以确定超声压力依赖性伤口尺寸和纳米颗粒的增强细胞摄取。基于模型的计算表明,有效伤口尺寸和纳米颗粒的细胞摄取随超声压力的增加呈线性增加(即,在施加的辐射压力为 0.21、0.29 和 0.40MPa 时,超声诱导的初始有效伤口半径分别为 150、460 和 650nm,并且声孔作用后的细胞内量子点浓度分别为 7.8、22.8 和 29.9nM),并且在 LU1205 细胞中诱导声孔作用所需的阈值压力约为 0.12MPa。