Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany.
J Bacteriol. 2011 Oct;193(19):5335-46. doi: 10.1128/JB.05490-11. Epub 2011 Jul 22.
Bacillus subtilis is known to accumulate large amounts of the compatible solute proline via de novo synthesis as a stress protectant when it faces high-salinity environments. We elucidated the genetic determinants required for the osmoadaptive proline production from the precursor glutamate. This proline biosynthesis route relies on the proJ-encoded γ-glutamyl kinase, the proA-encoded γ-glutamyl phosphate reductase, and the proH-encoded Δ1-pyrroline-5-caboxylate reductase. Disruption of the proHJ operon abolished osmoadaptive proline production and strongly impaired the ability of B. subtilis to cope with high-osmolarity growth conditions. Disruption of the proA gene also abolished osmoadaptive proline biosynthesis but caused, in contrast to the disruption of proHJ, proline auxotrophy. Northern blot analysis demonstrated that the transcription of the proHJ operon is osmotically inducible, whereas that of the proBA operon is not. Reporter gene fusion studies showed that proHJ expression is rapidly induced upon an osmotic upshift. Increased expression is maintained as long as the osmotic stimulus persists and is sensitively linked to the prevalent osmolarity of the growth medium. Primer extension analysis revealed the osmotically controlled proHJ promoter, a promoter that resembles typical SigA-type promoters of B. subtilis. Deletion analysis of the proHJ promoter region identified a 126-bp DNA segment carrying all sequences required in cis for osmoregulated transcription. Our data disclose the presence of ProA-interlinked anabolic and osmoadaptive proline biosynthetic routes in B. subtilis and demonstrate that the synthesis of the compatible solute proline is a central facet of the cellular defense to high-osmolarity surroundings for this soil bacterium.
枯草芽孢杆菌在面临高盐环境时,通过从头合成大量相容溶质脯氨酸作为应激保护剂来积累。我们从谷氨酸前体阐明了适应渗透脯氨酸生产所需的遗传决定因素。这个脯氨酸生物合成途径依赖于 proJ 编码的 γ-谷氨酰激酶、proA 编码的 γ-谷氨酰磷酸还原酶和 proH 编码的 Δ1-吡咯啉-5-羧酸盐还原酶。proHJ 操纵子的破坏消除了适应渗透脯氨酸的产生,并严重损害了枯草芽孢杆菌应对高渗透压生长条件的能力。proA 基因的破坏也消除了适应渗透脯氨酸的生物合成,但与 proHJ 的破坏相反,导致脯氨酸营养缺陷。Northern blot 分析表明,proHJ 操纵子的转录受渗透压诱导,而 proBA 操纵子的转录不受渗透压诱导。报告基因融合研究表明,proHJ 表达在渗透压上升时迅速诱导。只要渗透压刺激持续存在,表达就会持续增加,并与生长介质的流行渗透压高度相关。引物延伸分析揭示了渗透压控制的 proHJ 启动子,该启动子类似于枯草芽孢杆菌典型的 SigA 型启动子。proHJ 启动子区的缺失分析确定了一个携带顺式调控转录所需的所有序列的 126bp DNA 片段。我们的数据揭示了枯草芽孢杆菌中存在 ProA 相互连接的合成代谢和适应渗透脯氨酸生物合成途径,并证明了这种相容溶质脯氨酸的合成是该土壤细菌应对高渗透压环境的细胞防御的核心方面。