Nat Mater. 2011 Oct;10(10):742-6. doi: 10.1038/nmat3076.
Creating temperature gradients in magnetic nanostructures has resulted in a new research direction, that is, the combination of magneto- and thermoelectric effects. Here, we demonstrate the observation of one important effect of this class: the magneto-Seebeck effect. It is observed when a magnetic configuration changes the charge-based Seebeck coefficient. In particular, the Seebeck coefficient changes during the transition from a parallel to an antiparallel magnetic configuration in a tunnel junction. In this respect, it is the analogue to the tunnelling magnetoresistance. The Seebeck coefficients in parallel and antiparallel configurations are of the order of the voltages known from the charge-Seebeck effect. The size and sign of the effect can be controlled by the composition of the electrodes' atomic layers adjacent to the barrier and the temperature. The geometric centre of the electronic density of states relative to the Fermi level determines the size of the Seebeck effect. Experimentally, we realized 8.8% magneto-Seebeck effect, which results from a voltage change of about -8.7 μV K⁻¹ from the antiparallel to the parallel direction close to the predicted value of -12.1 μV K⁻¹. In contrast to the spin-Seebeck effect, it can be measured as a voltage change directly without conversion of a spin current.
在磁性纳米结构中产生温度梯度导致了一个新的研究方向,即将磁热电效应结合起来。在这里,我们展示了这一类的一个重要效应的观察结果:磁塞贝克效应。当磁构型改变基于电荷的塞贝克系数时,就会观察到这种效应。具体来说,在隧道结中从平行磁构型到反平行磁构型的转变过程中,塞贝克系数发生变化。在这方面,它类似于隧穿磁电阻。在平行和反平行配置中的塞贝克系数与从电荷塞贝克效应中已知的电压相当。该效应的大小和符号可以通过与势垒相邻的电极原子层的组成以及温度来控制。相对于费米能级的电子态密度的几何中心决定了塞贝克效应的大小。在实验中,我们实现了 8.8%的磁塞贝克效应,这是由于在接近预测值 -12.1 μV K⁻¹的反平行方向到平行方向上,电压变化约为 -8.7 μV K⁻¹。与自旋塞贝克效应不同,它可以直接作为电压变化进行测量,而无需自旋电流的转换。