Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
Sci China Life Sci. 2011 Aug;54(8):763-9. doi: 10.1007/s11427-011-4203-9. Epub 2011 Jul 24.
Intracellular Ca(2+) is vital for cell physiology. Disruption of Ca(2+) homeostasis contributes to human diseases such as heart failure, neuron-degeneration, and diabetes. To ensure an effective intracellular Ca(2+) dynamics, various Ca(2+) transport proteins localized in different cellular regions have to work in coordination. The central role of mitochondrial Ca(2+) transport mechanisms in responding to physiological Ca(2+) pulses in cytosol is to take up Ca(2+) for regulating energy production and shaping the amplitude and duration of Ca(2+) transients in various micro-domains. Since the discovery that isolated mitochondria can take up large quantities of Ca(2+) approximately 5 decades ago, extensive studies have been focused on the functional characterization and implication of ion channels that dictate Ca(2+) transport across the inner mitochondrial membrane. The mitochondrial Ca(2+) uptake sensitive to non-specific inhibitors ruthenium red and Ru360 has long been considered as the activity of mitochondrial Ca(2+) uniporter (MCU). The general consensus is that MCU is dominantly or exclusively responsible for the mitochondrial Ca(2+) influx. Since multiple Ca(2+) influx mechanisms (e.g. L-, T-, and N-type Ca(2+) channel) have their unique functions in the plasma membrane, it is plausible that mitochondrial inner membrane has more than just MCU to decode complex intracellular Ca(2+) signaling in various cell types. During the last decade, four molecular identities related to mitochondrial Ca(2+) influx mechanisms have been identified. These are mitochondrial ryanodine receptor, mitochondrial uncoupling proteins, LETM1 (Ca(2+)/H(+) exchanger), and MCU and its Ca(2+) sensing regulatory subunit MICU1. Here, we briefly review recent progress in these and other reported mitochondrial Ca(2+) influx pathways and their differences in kinetics, Ca(2+) dependence, and pharmacological characteristics. Their potential physiological and pathological implications are also discussed.
细胞内 Ca(2+) 对细胞生理至关重要。Ca(2+) 稳态的破坏导致心力衰竭、神经元退化和糖尿病等人类疾病。为了确保有效的细胞内 Ca(2+) 动力学,各种定位于不同细胞区域的 Ca(2+) 转运蛋白必须协调工作。线粒体 Ca(2+) 转运机制在响应细胞质中生理 Ca(2+) 脉冲中的核心作用是摄取 Ca(2+),以调节能量产生,并塑造各种微区中 Ca(2+) 瞬变的幅度和持续时间。自从大约 50 年前发现分离的线粒体可以摄取大量 Ca(2+) 以来,广泛的研究集中在决定离子穿过线粒体内膜的 Ca(2+) 转运的功能特征和离子通道的意义上。对非特异性抑制剂钌红和 Ru360 敏感的线粒体 Ca(2+) 摄取长期以来被认为是线粒体 Ca(2+) 单向转运体 (MCU) 的活性。普遍的共识是,MCU 主要或专门负责线粒体 Ca(2+) 的内流。由于多个 Ca(2+) 内流机制(例如 L-、T- 和 N-型 Ca(2+) 通道)在质膜中有其独特的功能,因此线粒体内膜解码各种细胞类型中复杂的细胞内 Ca(2+) 信号的机制可能不止 MCU 一种。在过去的十年中,已经确定了与线粒体 Ca(2+) 内流机制相关的四个分子身份。它们是线粒体兰尼碱受体、线粒体解偶联蛋白、LETM1(Ca(2+)/H(+) 交换器)以及 MCU 和其 Ca(2+) 感应调节亚基 MICU1。在这里,我们简要回顾了这些和其他报道的线粒体 Ca(2+) 内流途径的最新进展,以及它们在动力学、Ca(2+) 依赖性和药理学特征方面的差异。还讨论了它们的潜在生理和病理意义。