Department of Biomedical Engineering, Jacobs School of Medicine and Biomedical Sciences and School of Engineering and Applied Sciences, University at Buffalo-State University of New York, Buffalo, New York.
Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
Am J Physiol Cell Physiol. 2021 Apr 1;320(4):C465-C482. doi: 10.1152/ajpcell.00502.2020. Epub 2020 Dec 9.
Calcium (Ca) signaling is critical for cell function and cell survival. Mitochondria play a major role in regulating the intracellular Ca concentration ([Ca]). Mitochondrial Ca uptake is an important determinant of cell fate and governs respiration, mitophagy/autophagy, and the mitochondrial pathway of apoptosis. Mitochondrial Ca uptake occurs via the mitochondrial Ca uniporter (MCU) complex. This review summarizes the present knowledge on the function of MCU complex, regulation of MCU channel, and the role of MCU in Ca homeostasis and human disease pathogenesis. The channel core consists of four MCU subunits and essential MCU regulators (EMRE). Regulatory proteins that interact with them include mitochondrial Ca uptake 1/2 (MICU1/2), MCU dominant-negative β-subunit (MCUb), MCU regulator 1 (MCUR1), and solute carrier 25A23 (SLC25A23). In addition to these proteins, cardiolipin, a mitochondrial membrane-specific phospholipid, has been shown to interact with the channel core. The dynamic interplay between the core and regulatory proteins modulates MCU channel activity after sensing local changes in [Ca], reactive oxygen species, and other environmental factors. Here, we highlight the structural details of the human MCU heteromeric assemblies and their known roles in regulating mitochondrial Ca homeostasis. MCU dysfunction has been shown to alter mitochondrial Ca dynamics, in turn eliciting cell apoptosis. Changes in mitochondrial Ca uptake have been implicated in pathological conditions affecting multiple organs, including the heart, skeletal muscle, and brain. However, our structural and functional knowledge of this vital protein complex remains incomplete, and understanding the precise role for MCU-mediated mitochondrial Ca signaling in disease requires further research efforts.
钙信号对于细胞功能和细胞存活至关重要。线粒体在调节细胞内钙离子浓度([Ca])方面发挥着主要作用。线粒体摄取钙是决定细胞命运的重要因素,它控制着呼吸、线粒体自噬/自噬和线粒体凋亡途径。线粒体摄取钙是通过线粒体钙单向转运体(MCU)复合物进行的。这篇综述总结了目前关于 MCU 复合物功能、MCU 通道调节以及 MCU 在钙稳态和人类疾病发病机制中的作用的知识。该通道的核心由四个 MCU 亚基和必需的 MCU 调节剂(EMRE)组成。与它们相互作用的调节蛋白包括线粒体钙摄取 1/2(MICU1/2)、MCU 显性负β亚基(MCUb)、MCU 调节剂 1(MCUR1)和溶质载体 25A23(SLC25A23)。除了这些蛋白外,cardiolipin,一种线粒体膜特异性磷脂,已被证明与通道核心相互作用。核心和调节蛋白之间的动态相互作用在感应局部 Ca 变化、活性氧和其他环境因素后,调节 MCU 通道活性。在这里,我们强调了人源 MCU 异源三聚体组装的结构细节及其在调节线粒体钙稳态中的已知作用。已经证明 MCU 功能障碍会改变线粒体钙动力学,从而引发细胞凋亡。线粒体摄取钙的变化与影响多个器官的病理状况有关,包括心脏、骨骼肌和大脑。然而,我们对这个重要蛋白复合物的结构和功能知识仍然不完整,理解 MCU 介导的线粒体钙信号在疾病中的精确作用需要进一步的研究努力。