Suppr超能文献

使用迭代重加权最小二乘法提高动力学评估中的不确定性分析。

Improving uncertainty analysis in kinetic evaluations using iteratively reweighted least squares.

机构信息

Bayer CropScience, Monheim, Germany.

出版信息

Environ Toxicol Chem. 2011 Oct;30(10):2363-71. doi: 10.1002/etc.630. Epub 2011 Aug 24.

Abstract

Kinetic parameters of environmental fate processes are usually inferred by fitting appropriate kinetic models to the data using standard nonlinear least squares (NLS) approaches. Although NLS is appropriate to estimate the optimum parameter values, it implies restrictive assumptions on data variances when the confidence limits of the parameters must also be determined. Particularly in the case of degradation and metabolite formation, the assumption of equal error variance is often not realistic because the parent data usually show higher variances than those of the metabolites. Conventionally, such problems would be tackled by weighted NLS regression, which requires prior knowledge about the data errors. Instead of implicitly assuming equal error variances or giving arbitrary weights decided by the researcher, we use an iteratively reweighted least squares (IRLS) algorithm to obtain the maximum likelihood estimates of the model parameters and the error variances specific for the different species in a model. A study with simulated data shows that IRLS gives reliable results in the case of both unequal and equal error variances. We also compared results obtained by NLS and IRLS, with probability distributions of the parameters inferred with a Markov-Chain Monte-Carlo (MCMC) approach for data from aerobic transformation of different chemicals in soil. Confidence intervals obtained by IRLS and MCMC are consistent, whereas NLS leads to very different results when the error variances are distinctly different between different species. Because the MCMC results can be assumed to reflect the real parameter distribution imposed by the observed data, we conclude that IRLS generally yields more realistic estimates of confidence intervals for model parameters than NLS.

摘要

环境 fate 过程的动力学参数通常通过使用标准非线性最小二乘法(NLS)方法将适当的动力学模型拟合到数据上来推断。虽然 NLS 适合估计最佳参数值,但当必须确定参数的置信限时,它对数据方差有严格的假设。特别是在降解和代谢物形成的情况下,通常假设等误差方差是不现实的,因为母体数据的方差通常高于代谢物的方差。传统上,此类问题可以通过加权 NLS 回归来解决,该方法需要有关数据误差的先验知识。我们不隐式地假设等误差方差,也不赋予由研究人员决定的任意权重,而是使用迭代重加权最小二乘法(IRLS)算法来获得模型参数的最大似然估计值和模型中不同物种特有的误差方差。一项使用模拟数据的研究表明,IRLS 在不等和等误差方差的情况下都能给出可靠的结果。我们还比较了 NLS 和 IRLS 的结果,以及使用 Markov-Chain Monte-Carlo(MCMC)方法从土壤中不同化学品好氧转化的数据推断出的参数的概率分布。IRLS 和 MCMC 获得的置信区间是一致的,而当不同物种之间的误差方差明显不同时,NLS 会导致非常不同的结果。由于可以假设 MCMC 结果反映了由观测数据施加的实际参数分布,因此我们得出结论,IRLS 通常比 NLS 更能真实地估计模型参数的置信区间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验