Ecole Normale Supérieure de Lyon, Université Claude Bernard, and CNRS, 46 allée d'Italie, 69007 Lyon, France.
Metallomics. 2011 Sep;3(9):926-33. doi: 10.1039/c1mt00025j. Epub 2011 Jul 26.
Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zinc shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes is isotopically light with respect to serum, whereas Cu is heavy. Iron and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.
尽管铁铜稳态途径中的自然同位素变异对于理解其扰动具有重要意义,但人体中这些金属的天然同位素变异仍未得到探索。我们通过阴离子交换色谱分离和纯化后,使用多接收电感耦合等离子体质谱仪测量了约 50 名年轻献血者的全血、血清和红细胞中的铁、铜和锌同位素组成。锌的同位素变异性总体上比铁和铜小得多,这表明同位素分馏更多地取决于氧化还原条件,而不是配体配位。平均而言,红细胞中的铁相对于血清而言同位素较轻,而铜则较重。铁和铜同位素组成清楚地区分了男性和女性的红细胞。B 型男性红细胞中的铁和铜同位素明显比其他所有血型的铁和铜同位素分馏更多。同位素组成提供了一种评估金属质量平衡和稳态的原始方法。天然同位素变异性表明,当前的铁和铜红细胞生成模型违反了质量平衡要求。它揭示了铁的未被察觉的主要途径,其中包括同位素较重的铁蛋白和血铁黄素的红细胞生成,以及铜的同位素较轻的铜主要进入血液和淋巴循环,而不是进入富含超氧化物歧化酶的红细胞。铁同位素提供了红细胞生成率的固有测量标尺,而铜同位素似乎可以衡量红细胞生成和淋巴系统的相对活性。