Department of Biochemistry and Cell Biology and WM Keck Center for Computational Biology, Rice University, Houston, Texas 77005, United States.
Biochemistry. 2011 Aug 30;50(34):7361-74. doi: 10.1021/bi200923k. Epub 2011 Aug 8.
The free volume in the active site of human HbA plays a crucial role in governing the bimolecular rates of O(2), CO, and NO binding, the fraction of geminate ligand recombination, and the rate of NO dioxygenation by the oxygenated complex. We have decreased the size of the distal pocket by mutating Leu(B10), Val(E11), and Leu(G8) to Phe and Trp and that of other more internal cavities by filling them with Xe at high gas pressures. Increasing the size of the B10 side chain reduces bimolecular rates of ligand binding nearly 5000-fold and inhibits CO geminate recombination due to both reduction of the capture volume in the distal pocket and direct steric hindrance of Fe-ligand bond formation. Phe and Trp(E11) mutations also cause a decrease in distal pocket volume but, at the same time, increase access to the Fe atom because of the loss of the γ2 CH(3) group of the native Val(E11) side chain. The net result of these E11 substitutions is a dramatic increase in the rate of geminate recombination because dissociated CO is sequestered close to the Fe atom and can rapidly rebind without steric resistance. However, the bimolecular rate constants for binding of ligand to the Phe and Trp(E11) mutants are decreased 5-30-fold, because of a smaller capture volume. Geminate and bimolecular kinetic parameters for Phe and Trp(G8) mutants are similar to those for the native HbA subunits because the aromatic rings at this position cause little change in distal pocket volume and because ligands do not move past this position into the globin interior of wild-type HbA subunits. The latter conclusion is verified by the observation that Xe binding to the α and β Hb subunits has little effect on either geminate or bimolecular ligand rebinding. All of these experimental results argue strongly against alternative ligand migration pathways that involve movements through the protein interior in HbA. Instead, ligands appear to enter through the His(E7) gate and are captured directly in the distal cavity.
人血红蛋白 A 活性部位的自由体积在控制氧合、一氧化碳和一氧化氮的双分子结合速率、孪生配体重组分数以及含氧复合物中二氧氮化一氧化氮的速率方面起着至关重要的作用。我们通过将 Leu(B10)、Val(E11)和 Leu(G8)突变为苯丙氨酸和色氨酸,从而减小了远端口袋的大小,并通过在高压下用氙气填充其他更内部的空腔来减小其大小。增加 B10 侧链的大小几乎将配体结合的双分子速率降低了 5000 倍,并抑制了 CO 的孪生重组,这是由于远端口袋的捕获体积减小和 Fe-配体键形成的直接空间位阻所致。苯丙氨酸和色氨酸(E11)突变也会导致远端口袋体积减小,但同时由于丢失了天然 Val(E11)侧链的γ2 CH(3)基团,也会增加对 Fe 原子的访问。这些 E11 取代的净结果是孪生重组速率急剧增加,因为游离的 CO 被隔离在 Fe 原子附近,并且可以在没有空间位阻的情况下迅速重新结合。然而,由于捕获体积较小,与苯丙氨酸和色氨酸(E11)突变体结合的配体的双分子速率常数降低了 5-30 倍。由于这个位置的芳香环对远端口袋体积的影响很小,而且配体不会移动到这个位置进入野生型 HbA 亚基的球蛋白内部,因此苯丙氨酸和色氨酸(G8)突变体的孪生和双分子动力学参数与天然 HbA 亚基相似。后一个结论通过观察氙气与α和β Hb 亚基的结合对孪生或双分子配体再结合几乎没有影响得到了验证。所有这些实验结果都强烈反对涉及 HbA 中蛋白质内部运动的替代配体迁移途径。相反,配体似乎通过 His(E7)门进入,并直接在远端腔中被捕获。