Center on Genetics of Transport and Epithelial Biology and Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0585, USA.
Am J Physiol Renal Physiol. 2011 Nov;301(5):F969-78. doi: 10.1152/ajprenal.00010.2011. Epub 2011 Jul 27.
Hypokalemia is associated with increased ammoniagenesis and stimulation of net acid excretion by the kidney in both humans and experimental animals. The molecular mechanisms underlying these effects remain unknown. Toward this end, rats were placed in metabolic cages and fed a control or K(+)-deficient diet (KD) for up to 6 days. Rats subjected to KD showed normal acid-base status and serum electrolytes composition. Interestingly, urinary NH(4)(+) excretion increased significantly and correlated with a parallel decrease in urine K(+) excretion in KD vs. control animals. Molecular studies showed a specific upregulation of the glutamine transporter SN1, which correlated with the upregulation of glutaminase (GA), glutamate dehydrogenase (GDH), and phosphoenolpyruvate carboxykinase. These effects occurred as early as day 2 of KD. Rats subjected to a combined KD and 280 mM NH(4)Cl loading (to induce metabolic acidosis) for 2 days showed an additive increase in NH(4)(+) excretion along with an additive increment in the expression levels of ammoniagenic enzymes GA and GDH compared with KD or NH(4)Cl loading alone. The incubation of cultured proximal tubule cells NRK 52E or LLC-PK(1) in low-K(+) medium did not affect NH(4)(+) production and did not alter the expression of SN1, GA, or GDH in NRK cells. These results demonstrate that K(+) deprivation stimulates ammoniagenesis through a coordinated upregulation of glutamine transporter SN1 and ammoniagenesis enzymes. This effect is developed before the onset of hypokalemia. The signaling pathway mediating these events is likely independent of KD-induced intracellular acidosis. Finally, the correlation between increased NH(4)(+) production and decreased K(+) excretion indicate that NH(4)(+) synthesis and transport likely play an important role in renal K(+) conservation during hypokalemia.
低钾血症与人类和实验动物的肾脏中氨生成增加和净酸排泄刺激有关。这些影响的分子机制尚不清楚。为此,将大鼠置于代谢笼中,并用对照或低钾(KD)饮食喂养长达 6 天。KD 处理的大鼠表现出正常的酸碱状态和血清电解质组成。有趣的是,尿 NH 4 +排泄显著增加,并且与 KD 与对照动物相比,尿 K +排泄呈平行下降相关。分子研究表明,谷氨酰胺转运蛋白 SN1 特异性上调,与谷氨酰胺酶(GA)、谷氨酸脱氢酶(GDH)和磷酸烯醇丙酮酸羧激酶的上调相关。这些影响早在 KD 的第 2 天就发生了。接受 KD 和 280mM NH 4 Cl 加载(诱导代谢性酸中毒)联合处理 2 天的大鼠,与 KD 或 NH 4 Cl 单独加载相比,NH 4 +排泄增加,并且氨生成酶 GA 和 GDH 的表达水平也增加。在低 K +培养基中孵育培养的近端肾小管细胞 NRK 52E 或 LLC-PK 1 不会影响 NH 4 +的产生,也不会改变 NRK 细胞中 SN1、GA 或 GDH 的表达。这些结果表明,低钾血症通过协调上调谷氨酰胺转运蛋白 SN1 和氨生成酶来刺激氨生成。这种作用是在低钾血症发生之前发展起来的。介导这些事件的信号通路可能独立于 KD 诱导的细胞内酸中毒。最后,NH 4 +产生增加与 K +排泄减少之间的相关性表明,在低钾血症期间,NH 4 +合成和转运可能在肾脏 K +保存中发挥重要作用。