Cabella Brenno Caetano Troca, Martinez Alexandre Souto, Ribeiro Fabiano
Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 1):061902. doi: 10.1103/PhysRevE.83.061902. Epub 2011 Jun 2.
We consider a nontrivial one-species population dynamics model with finite and infinite carrying capacities. Time-dependent intrinsic and extrinsic growth rates are considered in these models. Through the model per capita growth rate we obtain a heuristic general procedure to generate scaling functions to collapse data into a simple linear behavior even if an extrinsic growth rate is included. With this data collapse, all the models studied become independent from the parameters and initial condition. Analytical solutions are found when time-dependent coefficients are considered. These solutions allow us to perceive nontrivial transitions between species extinction and survival and to calculate the transition's critical exponents. Considering an extrinsic growth rate as a cancer treatment, we show that the relevant quantity depends not only on the intensity of the treatment, but also on when the cancerous cell growth is maximum.
我们考虑一个具有有限和无限承载能力的非平凡单物种种群动态模型。这些模型中考虑了随时间变化的内在和外在增长率。通过模型的人均增长率,我们获得了一种启发式的通用程序,用于生成缩放函数,即使包含外在增长率,也能将数据压缩为简单的线性行为。通过这种数据压缩,所有研究的模型都变得与参数和初始条件无关。当考虑随时间变化的系数时,可以找到解析解。这些解使我们能够察觉到物种灭绝和生存之间的非平凡转变,并计算转变的临界指数。将外在增长率视为癌症治疗方法,我们表明相关量不仅取决于治疗强度,还取决于癌细胞生长何时达到最大值。