Das Siddhartha
Physics of Fluids, Faculty of Science and Technology, University of Twente, PO Box 217, NL-7500 AE Enschede, The Netherlands.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 2):066315. doi: 10.1103/PhysRevE.83.066315. Epub 2011 Jun 20.
In a recent study [S. Das, J. H. Snoeijer, and D. Lohse, Phys. Rev. E 82, 056310 (2010)], we provided quantitative demonstration of the conjecture [W. A. Ducker, Langmuir 25, 8907 (2009)] that the presence of impurities at the surface layer (or the air-water interface) of surface nanobubbles can substantially lower the gas-side contact angle and the Laplace pressure of the nanobubbles. Through an analytical model for any general air-water interface without nonideality effects, we showed that a large concentration of soluble impurities at the air-water interface of the nanobubbles ensures significantly small contact angles (matching well with the experimental results) and Laplace pressure (though large enough to forbid stability). In this paper this general model is extended to incorporate the effect of nonidealities at the air-water interface in impurity-induced alteration of surface nanobubble properties. Such nonideality effects arise from finite enthalpy or entropy of mixing or finite ionic interactions of the impurity molecules at the nanobubble air-water interface and ensure significant lowering of the nanobubble contact angle and Laplace pressure even at relatively small impurity coverage. In fact for impurity molecules that show enhanced tendency to get adsorbed at the nanobubble air-water interface from the bulk phase, impurity-induced lowering of the nanobubble contact angle is witnessed for extremely small bulk concentration. Surface nanobubble experiments being typically performed in an ultraclean environment, the bulk concentration of impurities is inevitably very small, and in this light the present calculations can be viewed as a satisfactory explanation of the conjecture that impurities, even in trace concentration, have significant impact on surface nanobubbles.
在最近的一项研究中[S. 达斯、J. H. 斯诺耶尔和D. 洛泽,《物理评论E》82卷,056310(2010)],我们对一个猜想[W. A. 达克,《朗缪尔》25卷,8907(2009)]进行了定量论证,即表面纳米气泡表面层(或气 - 水界面)存在杂质会显著降低纳米气泡的气体侧接触角和拉普拉斯压力。通过一个适用于任何无非理想效应的一般气 - 水界面的分析模型,我们表明纳米气泡气 - 水界面处大量的可溶性杂质会确保接触角显著变小(与实验结果吻合良好)以及拉普拉斯压力(尽管大到足以阻止稳定性)。在本文中,这个一般模型得到扩展,以纳入气 - 水界面非理想性在杂质诱导的表面纳米气泡性质改变中的影响。这种非理想效应源于纳米气泡气 - 水界面处杂质分子混合的有限焓或熵或有限离子相互作用,并且即使在相对较小的杂质覆盖度下也能确保纳米气泡接触角和拉普拉斯压力显著降低。事实上,对于那些从体相表现出在纳米气泡气 - 水界面吸附增强趋势的杂质分子,即使在极低的体相浓度下也能观察到杂质诱导的纳米气泡接触角降低。表面纳米气泡实验通常在超净环境中进行,杂质的体相浓度不可避免地非常小,鉴于此,目前的计算可以被视为对杂质即使在痕量浓度下也对表面纳米气泡有显著影响这一猜想的令人满意的解释。