Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, E-48080 Bilbao, Spain.
Inorg Chem. 2011 Sep 5;50(17):8437-51. doi: 10.1021/ic201013v. Epub 2011 Jul 29.
Detailed structural, magnetic, and luminescence studies of six different crystalline phases obtained in the lanthanide/pyrimidine-4,6-dicarboxylate/oxalate system have been afforded: {[Ln(μ-pmdc)(μ-ox)(0.5)(H(2)O)(2)]·3H(2)O}(n) (1-Ln), {[Ln(μ-pmdc)(μ-ox)(0.5)(H(2)O)(3)]·2H(2)O}(n) (2-Ln), {[Ln(μ(3)-pmdc)(μ-ox)(0.5)(H(2)O)(2)]·~2.33H(2)O}(n) (3-Ln), {[Ln(2)(μ(3)-pmdc)(μ(4)-pmdc)(μ-ox)(H(2)O)(3)]·5H(2)O}(n) (4-Ln), {[Ln(μ(3)-pmdc)(μ-ox)(0.5)(H(2)O)(2)]·H(2)O}(n) (5-Ln), and [Ln(pmdc)(1.5)(H(2)O)(2.5)] (6-Ln). The slow generation of the oxalate (ox) anion, obtained from the in situ partial hydrothermal decomposition of the pyrimidine-4,6-dicarboxylate (pmdc) ligand, allows us to obtain good shaped single crystals, while direct addition of potassium oxalate provides the same compounds but as polycrystalline samples. The crystal structures of all compounds are based on the double chelation established by the pmdc and ox ligands to provide distorted 2D honeycomb layers that, in some cases, are fused together, leading to 3D systems, by replacing some of the coordinated water molecules that complete the coordination sphere of the lanthanide by uncoordinated carboxylate oxygen atoms of the pmdc. The presence of channels occupied by crystallization water molecules is also a common feature with the exception of compounds 5-Ln. It is worth noting that compounds 3-Ln present a commensurate crystal structure related to the partial occupancy of the crystallization water molecules placed within the channels. Topological analyses have been carried out, showing a previously nonregistered topology for compounds 4-Ln, named as jcr1. The crystal structures are strongly dependent on the lanthanide ion size and the temperature employed during the hydrothermal synthesis. The lanthanide contraction favors crystal structures involving sterically less hindranced coordination environments for the final members of the lanthanide series. Additionally, reinforcement of the entropic effects at high temperatures directs the crystallization process toward less hydrated crystal structures. The magnetic data of these compounds indicate that the exchange coupling between the lanthanide atoms is almost negligible, so the magnetic behavior is dominated by the spin-orbit coupling and the ligand field perturbation. The luminescence properties that exhibit the compounds containing Nd(III), Eu(III), and Tb(III) have been also characterized.
已对镧系元素/嘧啶-4,6-二羧酸酯/草酸盐体系中获得的六种不同结晶相进行了详细的结构、磁性和发光研究:{[Ln(μ-pmdc)(μ-ox)(0.5)(H2O)(2)]·3H2O}(n) (1-Ln),{[Ln(μ-pmdc)(μ-ox)(0.5)(H2O)(3)]·2H2O}(n) (2-Ln),{[Ln(μ(3)-pmdc)(μ-ox)(0.5)(H2O)(2)]·~2.33H2O}(n) (3-Ln),{[Ln(2)(μ(3)-pmdc)(μ(4)-pmdc)(μ-ox)(H2O)(3)]·5H2O}(n) (4-Ln),{[Ln(μ(3)-pmdc)(μ-ox)(0.5)(H2O)(2)]·H2O}(n) (5-Ln)和[Ln(pmdc)(1.5)(H2O)(2.5)] (6-Ln)。草酸盐(ox)阴离子是通过嘧啶-4,6-二羧酸酯(pmdc)配体的原位部分水热分解缓慢产生的,这使得我们能够获得形状良好的单晶,而直接添加草酸钾则提供了相同的化合物,但为多晶样品。所有化合物的晶体结构均基于 pmdc 和 ox 配体建立的双重螯合作用,提供了扭曲的二维蜂窝状层,在某些情况下,这些层通过取代部分配位水分子而融合在一起,这些水分子由 pmdc 的未配位羧基氧原子完成镧系元素的配位球,从而形成 3D 系统。通道中占据结晶水分子的通道也是一个共同特征,但 5-Ln 化合物除外。值得注意的是,化合物 3-Ln 呈现出与通道内部分占据的结晶水分子相关的准同构晶体结构。已经进行了拓扑分析,结果表明化合物 4-Ln 的拓扑结构以前未被注册,命名为 jcr1。晶体结构强烈依赖于镧系元素离子的大小和水热合成过程中使用的温度。镧系元素收缩有利于涉及最终镧系元素成员的空间位阻较小的配位环境的晶体结构。此外,高温下熵效应的增强促使结晶过程朝向水合度较低的晶体结构发展。这些化合物的磁数据表明,镧系元素原子之间的交换耦合几乎可以忽略不计,因此磁行为主要由自旋轨道耦合和配体场微扰决定。还对含有 Nd(III)、Eu(III)和 Tb(III)的化合物的发光性质进行了表征。