Max-Planck-Institut für Biophysikalische Chemie, Spektroskopie und Photochemische Kinetik, 37070 Göttingen, Germany.
J Phys Chem A. 2011 Oct 13;115(40):10823-45. doi: 10.1021/jp2045614. Epub 2011 Sep 19.
The excited state behavior of the six m,n-dicyano-N,N-dimethylanilines (mnDCDMA) and m,n-dicyano-(N-methyl-N-isopropyl)anilines (mnDCMIA) is discussed as a function of solvent polarity and temperature. The dicyano moiety in these electron donor (D)/acceptor (A) molecules has a considerably larger electron affinity than the benzonitrile subgroup in 4-(dimethylamino)benzonitrile (DMABN). Nevertheless, the fluorescence spectra of the mnDCDMAs and mnDCMIAs in n-hexane all consist of a single emission originating from the locally excited (LE) state, indicating that a reaction from LE to an intramolecular charge transfer (ICT) state does not take place. The calculated energies E(ICT), obtained by employing the reduction potential of the dicyanobenzene subgroups and the oxidation potential of the amino substituents trimethylamine (N(Me)(3)) and isopropyldimethylamine (iPrNMe(2)), are lower than E(LE). The absence of an LE → ICT reaction therefore makes clear that the D and A units in the dicyanoanilines are not electronically decoupled. In the polar solvent acetonitrile (MeCN), dual (LE + ICT) fluorescence is found with 24DCDMA and 34DCDMA, as well as with 24DCMIA, 25DCMIA, and 34DCMIA. For all other mnDCDMAs and mnDCMIAs, only LE emission is observed in MeCN. The ICT/LE fluorescence quantum yield ratio Φ'(ICT)/Φ(LE) in MeCN at 25 °C is larger for 24DCDMA (1.2) than for 34DCDMA (0.35). The replacement of methyl by isopropyl in the amino substituent leads to a considerable increase of Φ'(ICT)/Φ(LE), 8.8 for 24DCMIA and 1.4 for 34DCMIA, showing that the LE ⇄ ICT equilibrium has shifted further toward ICT. The appearance of an ICT reaction with the 2,4- and 3,4-dicyanoanilines is caused by a relatively small energy gap ΔE(S(1),S(2)) between the two lowest excited singlet states as compared with the other m,n-dicyanoanilines, in accordance with the PICT model. The observation that the ICT reaction is more efficient for 24DCMIA and 34DCMIA than for their mnDCDMA counterparts is mainly caused by the fact that iPrNMe(2) is a better electron donor than N(Me)(3): E(D/D(+)) = 0.84 against 1.05 V vs SCE. That ICT also occurs with 25DCMIA, notwithstanding its large ΔE(S(1),S(2)), is due to the substantial amino twist angle θ = 42.6°, which leads to partial electronic decoupling of the D and A subgroups. The dipole moments μ(e)(ICT) range between 18 D for 34DCMIA and 12 D for 25DCMIA, larger than the corresponding μ(e)(LE) of 16 and 11 D. The difference between μ(e)(ICT) and μ(e)(LE) is smaller than with DMABN (17 and 10 D) because of the noncollinear arrangement of the amino and cyano substituents (different dipole moment directions). The dicyanoanilines that do not undergo ICT, have LE dipole moments between 9 and 16 D. From plots of ln(Φ'(ICT)/Φ(LE)) vs 1000/T, the (rather small) ICT reaction enthalpies ΔH could be measured in MeCN: 5.4 kJ/mol (24DCDMA), 4.7 kJ/mol (24DCMIA), and 3.9 kJ/mol (34DCMIA). With the mnDCDMAs and mnDCMIAs only showing LE emission, the fluorescence decays are single exponential, whereas for those undergoing an LE → ICT reaction the LE and ICT picosecond fluorescence decays are double exponential. In MeCN at 25 °C, the decay times τ(2) have values between 1.8 ps for 24DCMIA and 4.6 ps for 34DCMIA at 25 °C. Longer times are observed at lower temperatures. Arrhenius plots of the forward and backward ICT rate constants k(a) and k(d) of 25DCMIA in tetrahydrofuran, obtained from the LE and ICT fluorescence decays, give the activation energies E(a) = 4.5 kJ/mol and E(d) = 11.9 kJ/mol, i.e., ΔH = -7.4 kJ/mol. From femtosecond transient absorption spectra of 24DCDMA and 34DCDMA at 22 °C, ICT reaction times τ(2) = 1/(k(a) + k(d)) of 1.8 and 3.1 ps are determined. By combining these results with the data for the fluorescence decays and Φ'(ICT)/Φ(LE), the values k(a) = 49 × 10(10) s(-1) (24DCDMA) and k(a) = 23 × 10(10) s(-1) (34DCDMA) are calculated. An LE and ICT excited state absorption is present even at a pump/probe delay time of 100 ps, showing that an LE ⇄ ICT equilibrium is established.
六种 m,n-二氰基-N,N-二甲基苯胺(mnDCDMA)和 m,n-二氰基-(N-甲基-N-异丙基)苯胺(mnDCMIA)的激发态行为作为溶剂极性和温度的函数进行讨论。这些电子给体(D)/受体(A)分子中的二氰基部分的电子亲合势明显大于 4-(二甲氨基)苯腈(DMABN)中的苯腈基团。然而,mnDCDMAs 和 mnDCMIAs 在正己烷中的荧光光谱都由源自局域激发(LE)态的单个发射组成,表明 LE 到分子内电荷转移(ICT)态的反应不会发生。通过使用二氰基苯基团的还原电位和氨基取代基三甲胺(N(Me)(3))和异丙基二甲基胺(iPrNMe(2))的氧化电位计算得到的 ICT 能量 E(ICT),低于 E(LE)。因此,LE → ICT 反应的不存在清楚地表明二氰苯胺中的 D 和 A 单元没有电子去耦。在极性溶剂乙腈(MeCN)中,发现 24DCDMA 和 34DCDMA 以及 24DCMIA、25DCMIA 和 34DCMIA 存在双(LE + ICT)荧光。对于所有其他 mnDCDMAs 和 mnDCMIAs,在 MeCN 中仅观察到 LE 发射。在 25°C 下,MeCN 中的 ICT/LE 荧光量子产率比 Φ'(ICT)/Φ(LE)对于 24DCDMA(1.2)大于 34DCDMA(0.35)。在氨基取代基中用异丙基取代甲基会导致 Φ'(ICT)/Φ(LE)的显著增加,24DCMIA 为 8.8,34DCMIA 为 1.4,表明 LE ⇄ ICT 平衡进一步向 ICT 转移。2,4-和 3,4-二氰基苯胺出现 ICT 反应是由于与其他 m,n-二氰基苯胺相比,两个最低激发单重态之间的能量隙 ΔE(S(1),S(2))相对较小,符合 PICT 模型。观察到 24DCMIA 和 34DCMIA 的 ICT 反应比其 mnDCDMA 对应物更有效,主要是因为 iPrNMe(2)是比 N(Me)(3)更好的电子供体:E(D/D(+))=0.84 对 1.05 V 相对于 SCE。尽管其 ΔE(S(1),S(2))较大,但 ICT 也会发生在 25DCMIA 中,这是由于氨基扭转角θ=42.6°,导致 D 和 A 亚基部分电子去耦。偶极矩 μ(e)(ICT) 范围在 34DCMIA 的 18 D 和 25DCMIA 的 12 D 之间,大于相应的 LE 偶极矩 16 和 11 D。μ(e)(ICT) 和 μ(e)(LE)之间的差异小于 DMABN(17 和 10 D),因为氨基和氰基取代基的非共线排列(不同的偶极矩方向)。不发生 ICT 的二氰基苯胺具有 9 到 16 D 的 LE 偶极矩。从 ln(Φ'(ICT)/Φ(LE))与 1000/T 的关系图中,可以测量 MeCN 中的 ICT 反应焓 ΔH:24DCDMA 为 5.4 kJ/mol,24DCMIA 为 4.7 kJ/mol,34DCMIA 为 3.9 kJ/mol。mnDCDMAs 和 mnDCMIAs 仅显示 LE 发射,荧光衰减为单指数,而对于那些发生 LE → ICT 反应的,LE 和 ICT 皮秒荧光衰减为双指数。在 25°C 下,MeCN 中的衰减时间 τ(2)对于 24DCMIA 为 1.8 ps,对于 34DCMIA 为 4.6 ps。在较低温度下观察到更长的时间。从 LE 和 ICT 荧光衰减获得的 25DCMIA 在四氢呋喃中的正向和反向 ICT 速率常数 k(a)和 k(d)的 Arrhenius 图给出了活化能 E(a)=4.5 kJ/mol 和 E(d)=11.9 kJ/mol,即 ΔH=-7.4 kJ/mol。从 22°C 下的 24DCDMA 和 34DCDMA 的飞秒瞬态吸收光谱,确定了 ICT 反应时间 τ(2)=1/(k(a)+k(d))为 1.8 和 3.1 ps。通过将这些结果与荧光衰减和 Φ'(ICT)/Φ(LE)的数据相结合,计算出 k(a)=49×10(10) s(-1)(24DCDMA)和 k(a)=23×10(10) s(-1)(34DCDMA)的值。即使在泵浦/探测延迟时间为 100 ps 时,也存在 LE 和 ICT 激发态吸收,表明已经建立了 LE ⇄ ICT 平衡。