Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
Biomaterials. 2011 Oct;32(30):7479-90. doi: 10.1016/j.biomaterials.2011.06.034. Epub 2011 Jul 29.
A major challenge in tissue engineering is to reproduce the native 3D microvascular architecture fundamental for in vivo functions. Current approaches still lack a network of perfusable vessels with native 3D structural organization. Here we present a new method combining self-assembled monolayer (SAM)-based cell transfer and gelatin methacrylate hydrogel photopatterning techniques for microengineering vascular structures. Human umbilical vein cell (HUVEC) transfer from oligopeptide SAM-coated surfaces to the hydrogel revealed two SAM desorption mechanisms: photoinduced and electrochemically triggered. The former, occurs concomitantly to hydrogel photocrosslinking, and resulted in efficient (>97%) monolayer transfer. The latter, prompted by additional potential application, preserved cell morphology and maintained high transfer efficiency of VE-cadherin positive monolayers over longer culture periods. This approach was also applied to transfer HUVECs to 3D geometrically defined vascular-like structures in hydrogels, which were then maintained in perfusion culture for 15 days. As a step toward more complex constructs, a cell-laden hydrogel layer was photopatterned around the endothelialized channel to mimic the vascular smooth muscle structure of distal arterioles. This study shows that the coupling of the SAM-based cell transfer and hydrogel photocrosslinking could potentially open up new avenues in engineering more complex, vascularized tissue constructs for regenerative medicine and tissue engineering applications.
在组织工程学中,一个主要的挑战是复制对体内功能至关重要的天然 3D 微血管结构。目前的方法仍然缺乏具有天然 3D 结构组织的可灌注血管网络。在这里,我们提出了一种新的方法,将基于自组装单分子层 (SAM) 的细胞转移和明胶甲基丙烯酰基水凝胶光图案化技术结合起来用于微工程血管结构。从寡肽 SAM 涂层表面到水凝胶的人脐静脉细胞 (HUVEC) 转移揭示了两种 SAM 解吸机制:光诱导和电化学触发。前者与水凝胶光交联同时发生,并导致高效 (>97%)单层转移。后者由额外的潜在应用触发,在更长的培养时间内保持细胞形态和高转移效率的 VE-钙粘蛋白阳性单层。该方法还应用于将 HUVEC 转移到水凝胶中的 3D 几何定义的血管样结构中,然后在灌注培养中维持 15 天。作为向更复杂结构迈进的一步,用光图案化方法在血管化通道周围对含有细胞的水凝胶层进行图案化,以模拟远端小动脉的血管平滑肌结构。这项研究表明,SAM 基细胞转移和水凝胶光交联的结合可能为再生医学和组织工程应用中的更复杂、血管化组织构建开辟新途径。