文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

动态热响应性生物材料的分子设计

Molecular design of dynamically thermoresponsive biomaterials.

作者信息

Kobayashi Jun, Nakayama Masamichi, Nagase Kenichi

机构信息

Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, Tokyo, Japan.

Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.

出版信息

Sci Technol Adv Mater. 2025 Mar 7;26(1):2475736. doi: 10.1080/14686996.2025.2475736. eCollection 2025.


DOI:10.1080/14686996.2025.2475736
PMID:40134749
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11934171/
Abstract

Dynamically thermoresponsive biomaterials, particularly those utilizing poly(-isopropylacrylamide) (PNIPAAm), have attracted much attention in biomedical applications due to their reversible phase transition near body temperature. These biomaterials provide innovations across drug delivery system, chromatography, and tissue engineering. Molecular designs, such as the incorporation of hydrophilic comonomers or graft copolymers in PNIPAAm hydrogels, enhance rapid kinetics of the gels when jumping the temperature across the phase transition temperature, because of avoiding 'skin layer' formation on the surface of the gels. Nanocarriers possessing PNIPAAm coronas facilitate spatial drug delivery and temporally on-demand drug release to targeted cancers in combination with hyperthermic therapy. Downsizing of PNIPAAm hydrogels accelerates the kinetics of shrinkage/swelling, leading to applications as thermoresponsive chromatographic matrices and cell cultureware. PNIPAAm-modified surfaces support thermoresponsive cell culture systems for the non-invasive recovery of intact cell sheets, enabling advanced regenerative therapies and layered 3D tissue formation. Recent developments also integrate growth factor delivery for sustained cell stimulation on culturewares. Newly developed biomaterials, including dynamically thermoresponsive PNIPAAm, are expected to expand the opportunity for novel treatment technologies such as targeted therapies and regenerative medicine.

摘要

动态热响应性生物材料,尤其是那些利用聚(N-异丙基丙烯酰胺)(PNIPAAm)的材料,因其在体温附近的可逆相变而在生物医学应用中备受关注。这些生物材料在药物递送系统、色谱和组织工程等领域带来了创新。分子设计,如在PNIPAAm水凝胶中引入亲水性共聚单体或接枝共聚物,由于避免了凝胶表面“皮层”的形成,从而在温度跨越相变温度时增强了凝胶的快速动力学。具有PNIPAAm冠层的纳米载体结合热疗,有助于实现空间药物递送和对靶向癌症的按需定时药物释放。PNIPAAm水凝胶的小型化加速了收缩/膨胀动力学,从而使其可应用于热响应性色谱基质和细胞培养器皿。PNIPAAm修饰的表面支持热响应性细胞培养系统,用于无创回收完整的细胞片,实现先进的再生疗法和分层3D组织形成。最近的进展还包括整合生长因子递送,以在培养器皿上持续刺激细胞。新开发的生物材料,包括动态热响应性PNIPAAm,有望为靶向治疗和再生医学等新型治疗技术拓展机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375b/11934171/1d725ac3d996/TSTA_A_2475736_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375b/11934171/f4bc6b3b7fe9/TSTA_A_2475736_UF0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375b/11934171/e83ed066554d/TSTA_A_2475736_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375b/11934171/2722b5d9f369/TSTA_A_2475736_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375b/11934171/ea42b01b20b7/TSTA_A_2475736_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375b/11934171/c4d5704bac6e/TSTA_A_2475736_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375b/11934171/01cd5f15f4c0/TSTA_A_2475736_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375b/11934171/1d725ac3d996/TSTA_A_2475736_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375b/11934171/f4bc6b3b7fe9/TSTA_A_2475736_UF0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375b/11934171/e83ed066554d/TSTA_A_2475736_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375b/11934171/2722b5d9f369/TSTA_A_2475736_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375b/11934171/ea42b01b20b7/TSTA_A_2475736_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375b/11934171/c4d5704bac6e/TSTA_A_2475736_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375b/11934171/01cd5f15f4c0/TSTA_A_2475736_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375b/11934171/1d725ac3d996/TSTA_A_2475736_F0006_OC.jpg

相似文献

[1]
Molecular design of dynamically thermoresponsive biomaterials.

Sci Technol Adv Mater. 2025-3-7

[2]
Thermoresponsive interfaces obtained using poly(N-isopropylacrylamide)-based copolymer for bioseparation and tissue engineering applications.

Adv Colloid Interface Sci. 2021-9

[3]
Multifunctional temperature-responsive polymers as advanced biomaterials and beyond.

J Appl Polym Sci. 2020-7-5

[4]
Injectable Depot Forming Thermoresponsive Hydrogel for Sustained Intrascleral Delivery of Sunitinib Using Hollow Microneedles.

J Ocul Pharmacol Ther. 2022

[5]
Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications.

Biomaterials. 2017-10-27

[6]
Fast and Large Shrinking of Thermoresponsive Hydrogels with Phase-Separated Structures.

Gels. 2021-2-16

[7]
Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications.

Eur J Pharm Biopharm. 2014-11

[8]
Superfast and Reversible Thermoresponse of Poly( N-isopropylacrylamide) Hydrogels Grafted on Macroporous Poly(vinyl alcohol) Formaldehyde Sponges.

ACS Appl Mater Interfaces. 2018-9-12

[9]
Preparation and Characterization of Thermoresponsive Poly(-Isopropylacrylamide) for Cell Culture Applications.

Polymers (Basel). 2020-2-9

[10]
Injectable Thermoresponsive Hydrogel Formed by Alginate-g-Poly(N-isopropylacrylamide) That Releases Doxorubicin-Encapsulated Micelles as a Smart Drug Delivery System.

ACS Appl Mater Interfaces. 2017-10-2

引用本文的文献

[1]
Temperature-modulated separation of therapeutic cells, viral vectors, and exosomes using functional polymers.

Anal Sci. 2025-5-23

本文引用的文献

[1]
Temperature-modulated interactions between thermoresponsive strong cationic copolymer-brush-grafted silica beads and biomolecules.

Heliyon. 2024-7-20

[2]
Temperature-modulated separation of vascular cells using thermoresponsive-anionic block copolymer-modified glass.

Regen Ther. 2024-4-6

[3]
Terminus-Selective Covalent Immobilization of Heparin on a Thermoresponsive Surface Using Click Chemistry for Efficient Binding of Basic Fibroblast Growth Factor.

Macromol Biosci. 2024-2

[4]
A thermoresponsive cationic block copolymer brush-grafted silica bead interface for temperature-modulated separation of adipose-derived stem cells.

Colloids Surf B Biointerfaces. 2022-12

[5]
Temperature-sensitive polymers to promote heat-triggered drug release from liposomes: Towards bypassing EPR.

Adv Drug Deliv Rev. 2022-10

[6]
Thermoresponsive block copolymer brush for temperature-modulated hepatocyte separation.

J Mater Chem B. 2022-11-3

[7]
Preservation of heparin-binding EGF-like growth factor activity on heparin-modified poly(-isopropylacrylamide)-grafted surfaces.

RSC Adv. 2021-11-18

[8]
Drug development of lyso-thermosensitive liposomal doxorubicin: Combining hyperthermia and thermosensitive drug delivery.

Adv Drug Deliv Rev. 2021-11

[9]
Thermally-modulated cell separation columns using a thermoresponsive block copolymer brush as a packing material for the purification of mesenchymal stem cells.

Biomater Sci. 2021-10-26

[10]
π-SACS: pH Induced Self-Assembled Cell Sheets Without the Need for Modified Surfaces.

ACS Biomater Sci Eng. 2020-9-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索