Shariff Aabid, Murphy Robert F, Rohde Gustavo K
Lane Center for Computational Biology and Center for Bioimage Informatics, Carnegie Mellon University, Pittsburgh, PA.
Proc IEEE Int Symp Biomed Imaging. 2011 Jun 9;2011(March 30 2011-April 2 2011):1330-1333. doi: 10.1109/ISBI.2011.5872646.
While basic principles of microtubule organization are well understood, much remains to be learned about the extent and significance of variation in that organization among cell types and conditions. Large numbers of images of microtubule distributions for many cell types can be readily obtained by high throughput fluorescence microscopy but direct estimation of the parameters underlying the organization is problematic because it is difficult to resolve individual microtubules present at the microtubule-organizing center or at regions of high crossover. Previously, we developed an indirect, generative model-based approach that can estimate such spatial distribution parameters as the number and mean length of microtubules. In order to validate this approach, we have applied it to 3D images of NIH 3T3 cells expressing fluorescently-tagged tubulin in the presence and absence of the microtubule depolymerizing drug nocodazole. We describe here the first application of our inverse modeling approach to live cell images and demonstrate that it yields estimates consistent with expectations.
虽然微管组织的基本原理已得到充分理解,但关于该组织在不同细胞类型和条件下的变化程度及意义,仍有许多有待了解之处。通过高通量荧光显微镜可以轻松获得许多细胞类型的大量微管分布图像,但直接估计组织背后的参数存在问题,因为难以分辨存在于微管组织中心或高交叉区域的单个微管。此前,我们开发了一种基于间接生成模型的方法,该方法可以估计微管数量和平均长度等空间分布参数。为了验证该方法,我们已将其应用于在存在和不存在微管解聚药物诺考达唑的情况下表达荧光标记微管蛋白的NIH 3T3细胞的3D图像。我们在此描述了我们的逆向建模方法在活细胞图像中的首次应用,并证明它产生的估计结果与预期一致。