Suppr超能文献

细胞组织器:源自图像的亚细胞组织和蛋白质分布模型。

CellOrganizer: Image-derived models of subcellular organization and protein distribution.

作者信息

Murphy Robert F

机构信息

Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

出版信息

Methods Cell Biol. 2012;110:179-93. doi: 10.1016/B978-0-12-388403-9.00007-2.

Abstract

This chapter describes approaches for learning models of subcellular organization from images. The primary utility of these models is expected to be from incorporation into complex simulations of cell behaviors. Most current cell simulations do not consider spatial organization of proteins at all, or treat each organelle type as a single, idealized compartment. The ability to build generative models for all proteins in a proteome and use them for spatially accurate simulations is expected to improve the accuracy of models of cell behaviors. A second use, of potentially equal importance, is expected to be in testing and comparing software for analyzing cell images. The complexity and sophistication of algorithms used in cell-image-based screens and assays (variously referred to as high-content screening, high-content analysis, or high-throughput microscopy) is continuously increasing, and generative models can be used to produce images for testing these algorithms in which the expected answer is known.

摘要

本章描述了从图像中学习亚细胞组织模型的方法。这些模型的主要用途预计是将其纳入细胞行为的复杂模拟中。目前大多数细胞模拟根本不考虑蛋白质的空间组织,或者将每种细胞器类型视为一个单一的、理想化的隔室。构建蛋白质组中所有蛋白质的生成模型并将其用于空间精确模拟的能力有望提高细胞行为模型的准确性。另一个可能同样重要的用途预计是用于测试和比较分析细胞图像的软件。基于细胞图像的筛选和检测(各种称为高内涵筛选、高内涵分析或高通量显微镜)中使用的算法的复杂性和精密性在不断增加,生成模型可用于生成图像以测试这些算法,其中预期答案是已知的。

相似文献

3
Communicating subcellular distributions.传达亚细胞分布。
Cytometry A. 2010 Jul;77(7):686-92. doi: 10.1002/cyto.a.20933.
9
Building cell models and simulations from microscope images.从显微镜图像构建细胞模型并进行模拟。
Methods. 2016 Mar 1;96:33-39. doi: 10.1016/j.ymeth.2015.10.011. Epub 2015 Oct 17.
10
Quantitative analysis of organelle abundance, morphology and dynamics.定量分析细胞器丰度、形态和动态。
Curr Opin Biotechnol. 2011 Feb;22(1):127-32. doi: 10.1016/j.copbio.2010.10.015. Epub 2010 Nov 22.

引用本文的文献

2
Basal body organization and cell geometry during the cell cycle in .在. 的细胞周期中基体的组织和细胞形态
Mol Biol Cell. 2023 May 15;34(6):ar53. doi: 10.1091/mbc.E22-11-0508. Epub 2023 Jan 11.
6
Evaluation of methods for generative modeling of cell and nuclear shape.细胞和核形状生成建模方法的评估。
Bioinformatics. 2019 Jul 15;35(14):2475-2485. doi: 10.1093/bioinformatics/bty983.
10
Visualizing quantitative microscopy data: History and challenges.可视化定量显微镜数据:历史与挑战。
Crit Rev Biochem Mol Biol. 2016;51(2):96-101. doi: 10.3109/10409238.2016.1146222. Epub 2016 Feb 24.

本文引用的文献

1
AUTOMATED ESTIMATION OF MICROTUBULE MODEL PARAMETERS FROM 3-D LIVE CELL MICROSCOPY IMAGES.基于三维活细胞显微镜图像自动估计微管模型参数
Proc IEEE Int Symp Biomed Imaging. 2011 Jun 9;2011(March 30 2011-April 2 2011):1330-1333. doi: 10.1109/ISBI.2011.5872646.
2
Sorting the nuclear proteome.对核蛋白质组进行分类。
Bioinformatics. 2011 Jul 1;27(13):i7-14. doi: 10.1093/bioinformatics/btr217.
5
Instance-Based Generative Biological Shape Modeling.基于实例的生成式生物形状建模
Proc IEEE Int Symp Biomed Imaging. 2009;5193141:690-693. doi: 10.1109/ISBI.2009.5193141.
6
Communicating subcellular distributions.传达亚细胞分布。
Cytometry A. 2010 Jul;77(7):686-92. doi: 10.1002/cyto.a.20933.
8
Automated image analysis for high-content screening and analysis.用于高内涵筛选和分析的自动化图像分析
J Biomol Screen. 2010 Aug;15(7):726-34. doi: 10.1177/1087057110370894. Epub 2010 May 20.
9
Automated microscopy for high-content RNAi screening.自动化显微镜高通量 RNAi 筛选
J Cell Biol. 2010 Feb 22;188(4):453-61. doi: 10.1083/jcb.200910105.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验