Suppr超能文献

探索 200nm 激发后吡唑中超快 H 原子消除与光解碎片途径。

Exploring ultrafast H-atom elimination versus photofragmentation pathways in pyrazole following 200 nm excitation.

机构信息

Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, UK.

出版信息

J Phys Chem A. 2012 Mar 22;116(11):2600-9. doi: 10.1021/jp2053212. Epub 2011 Aug 1.

Abstract

The role of ultraviolet photoresistance in many biomolecules (e.g., DNA bases and amino acids) has been extensively researched in recent years. This behavior has largely been attributed to the participation of dissociative (1)πσ* states localized along X-H (X ═ N, O) bonds, which facilitate an efficient means for rapid nonradiative relaxation back to the electronic ground state via conical intersections or ultrafast H-atom elimination. One such species known to exhibit this characteristic photochemistry is the UV chromophore imidazole, a subunit in the biomolecules adenine and histidine. However, the (1)πσ* driven photochemistry of its structural isomer pyrazole has received much less attention, both experimentally and theoretically. Here, we probe the ultrafast excited state dynamics occurring in pyrazole following photoexcitation at 200 nm (6.2 eV) using two experimental methodologies. The first uses time-resolved velocity map ion imaging to investigate the ultrafast H-atom elimination dynamics following direct excitation to the lowest energy (1)πσ* state (1(1)A" ← X(1)A'). These results yield a bimodal distribution of eliminated H-atoms, situated at low and high kinetic energies, the latter of which we attribute to (1)πσ* mediated N-H fission. The time constants extracted for the low and high energy features are ~120 and <50 fs, respectively. We also investigate the role of ring deformation relaxation pathways from the first optically bright (1)ππ* state (2(1)A' ← X(1)A'), by performing time-resolved ion yield measurements. These results are modeled using a (1)ππ* → ring deformation → photofragmentation mechanism (a model based on comparison with theoretical calculations on the structural isomer imidazole) and all photofragments possess appearance time constants of <160 fs. A comparison between time-resolved velocity map ion imaging and time-resolved ion yield measurements suggest that (1)πσ* driven N-H fission gives rise to the dominant kinetic photoproducts, re-enforcing the important role (1)πσ* states have in the excited state dynamics of biological chromophores and related aromatic heterocycles.

摘要

近年来,人们对许多生物分子(例如 DNA 碱基和氨基酸)中紫外线光致抗蚀剂的作用进行了广泛研究。这种行为主要归因于离解(1)πσ态沿 X-H(X ═ N,O)键的局部化,这通过锥形交叉或超快 H 原子消除为快速非辐射弛豫回到电子基态提供了有效的途径。一种已知表现出这种特征光化学性质的物质是紫外线发色团咪唑,它是生物分子腺嘌呤和组氨酸的亚基。然而,其结构异构体吡唑的(1)πσ驱动光化学反应受到的实验和理论关注要少得多。在这里,我们使用两种实验方法研究了在 200nm(6.2eV)光激发下吡唑中发生的超快激发态动力学。第一种方法使用时间分辨速度映射离子成像来研究直接激发到最低能量(1)πσ态(1(1)A"←X(1)A')后超快 H 原子消除动力学。这些结果产生了消除 H 原子的双峰分布,位于低和高动能,我们归因于(1)πσ介导的 N-H 裂变的是后一种。低能和高能特征提取的时间常数分别约为 120 和 <50fs。我们还通过执行时间分辨离子产率测量来研究来自第一光学亮(1)ππ态(2(1)A'←X(1)A')的环变形弛豫途径的作用。这些结果使用(1)ππ→环变形→光致断裂机制进行建模(该模型基于与结构异构体咪唑的理论计算进行比较),并且所有光致碎片都具有<160fs 的出现时间常数。时间分辨速度映射离子成像与时间分辨离子产率测量之间的比较表明,(1)πσ驱动的 N-H 裂变产生了主要的动力学光产物,这再次证明了(1)πσ态在生物发色团和相关芳香杂环的激发态动力学中的重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验