Institute of Biophysics, Academy of Sciences of the Czech Republic, vvi Kralovopolska 135, CZ-61265 Brno, Czech Republic.
Mol Pharm. 2011 Oct 3;8(5):1941-54. doi: 10.1021/mp200309x. Epub 2011 Aug 17.
A combination of biophysical, biochemical, and computational techniques was used to delineate mechanistic differences between the platinum-acridine hybrid agent PtCl(en)(L)(2) (complex 1, en = ethane-1,2-diamine, L = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) and a considerably more potent second-generation analogue containing L' = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine (complex 2). Calculations at the density functional theory level provide a rationale for the binding preference of both complexes for guanine-N7 and the relatively high level of adenine adducts observed for compound 1. A significant rate enhancement is observed for binding of the amidine-based complex 2 with DNA compared with the thiourea-based prototype 1. Studies conducted with chemical probes and on the bending and unwinding of model duplex DNA suggest that adducts of complex 2 perturb B-form DNA more severely than complex 1, however, without denaturing the double strand and significantly less than cisplatin. Circular and linear dichroism spectroscopies and viscosity measurements suggest that subtle differences exist between the intercalation modes and adduct geometries of the two complexes. The adducts formed by complex 2 most efficiently inhibit transcription of the damaged DNA by RNA polymerase II. Not only do complexes 1 and 2 cause less distortion to DNA than cisplatin, they also do not compromise the thermodynamic stability of the modified duplex. This leads to a decreased or negligible affinity of HMG domain proteins for the adducts formed by either Pt-acridine complex. In a DNA repair synthesis assay the lesions formed by complex 2 were repaired less efficiently than those formed by complex 1. These significant differences in DNA adduct formation, structure, and recognition between the two acridine complexes and cisplatin help to elucidate why compound 2 is highly active in cisplatin-resistant, repair proficient cancer cell lines.
采用生物物理、生化和计算技术相结合的方法,阐明了铂吖啶杂化物[PtCl(en)(L)](NO3)(2)(复合物 1,en = 乙二胺,L = 1-[2-(吖啶-9-基氨基)乙基]-1,3-二甲基硫脲)与含有 L'=N-[2-(吖啶-9-基氨基)乙基]-N-甲基丙酰胺(复合物 2)的第二代类似物之间的机制差异。在密度泛函理论水平上的计算为两个复合物与鸟嘌呤-N7 的结合偏好以及对 1 化合物观察到的相对高水平的腺嘌呤加合物提供了依据。与基于硫脲的原型 1 相比,酰胺基复合物 2 与 DNA 的结合明显增强。用化学探针和对模型双链 DNA 的弯曲和展开进行的研究表明,与复合物 1 相比,复合物 2 的加合物更严重地扰乱 B 型 DNA,但不会使双链变性,并且比顺铂少得多。圆二色性和线二色性光谱以及粘度测量表明,两种复合物的嵌入模式和加合物几何形状存在细微差异。复合物 2 形成的加合物最有效地抑制 RNA 聚合酶 II 对受损 DNA 的转录。复合物 1 和 2 不仅比顺铂对 DNA 的扭曲小,而且不会影响修饰的双链的热力学稳定性。这导致 HMG 结构域蛋白对任何 Pt-吖啶复合物形成的加合物的亲和力降低或可以忽略不计。在 DNA 修复合成测定中,复合物 2 形成的损伤比复合物 1 形成的损伤修复效率低。这两种吖啶复合物与顺铂之间在 DNA 加合物形成、结构和识别方面的显著差异有助于阐明为什么复合物 2 在顺铂耐药、修复能力强的癌细胞系中具有高度活性。