CEA, Neurospin∕I2BM, Laboratoire de Résonance Magnétique Nucléaire, F-91191 Gif-sur-Yvette cedex, France.
J Chem Phys. 2011 Jul 28;135(4):044109. doi: 10.1063/1.3610943.
In this article, we present an alternative expansion scheme called Floquet-Magnus expansion (FME) used to solve a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state nuclear magnetic resonance (NMR) in particular. The commonly used methods to treat theoretical problems in solid-state NMR are the average Hamiltonian theory (AHT) and the Floquet theory (FT), which have been successful for designing sophisticated pulse sequences and understanding of different experiments. To the best of our knowledge, this is the first report of the FME scheme in the context of solid state NMR and we compare this approach with other series expansions. We present a modified FME scheme highlighting the importance of the (time-periodic) boundary conditions. This modified scheme greatly simplifies the calculation of higher order terms and shown to be equivalent to the Floquet theory (single or multimode time-dependence) but allows one to derive the effective Hamiltonian in the Hilbert space. Basic applications of the FME scheme are described and compared to previous treatments based on AHT, FT, and static perturbation theory. We discuss also the convergence aspects of the three schemes (AHT, FT, and FME) and present the relevant references.
在本文中,我们提出了一种称为 Floquet-Magnus 展开(FME)的替代展开方案,用于解决一般量子物理学中特别是固态核磁共振(NMR)中的一个中心问题,即时间相关线性微分方程。解决固态 NMR 中理论问题的常用方法是平均哈密顿理论(AHT)和 Floquet 理论(FT),这些方法已成功用于设计复杂的脉冲序列和理解不同的实验。据我们所知,这是 FME 方案在固态 NMR 背景下的首次报告,我们将这种方法与其他级数展开进行了比较。我们提出了一种改进的 FME 方案,强调了(时变)边界条件的重要性。该改进方案极大地简化了高阶项的计算,并与 Floquet 理论(单模或多模时变)等效,但允许在 Hilbert 空间中推导有效哈密顿量。描述了 FME 方案的基本应用,并与基于 AHT、FT 和静态微扰理论的先前处理方法进行了比较。我们还讨论了这三个方案(AHT、FT 和 FME)的收敛性方面,并给出了相关参考文献。