NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
J Chem Phys. 2011 Jul 28;135(4):044110. doi: 10.1063/1.3611020.
The first derivative of the total energy with respect to nuclear coordinates (the energy gradient) in the fragment molecular orbital (FMO) method is applied to second order Møller-Plesset perturbation theory (MP2), resulting in the analytic derivative of the correlation energy in the external self-consistent electrostatic field. The completely analytic energy gradient equations are formulated at the FMO-MP2 level. Both for molecular clusters (H(2)O)(64) and a system with fragmentation across covalent bonds, a capped alanine decamer, the analytic FMO-MP2 energy gradients with the electrostatic dimer approximation are shown to be complete and accurate by comparing them with the corresponding numeric gradients. The developed gradient is parallelized with the parallel efficiency of about 97% on 32 Pentium4 nodes connected by Gigabit Ethernet.
总能量对核坐标(能量梯度)的一阶导数在片段分子轨道(FMO)方法中应用于二级 Møller-Plesset 微扰理论(MP2),得到了在外静电场中相关能量的解析导数。完全解析的能量梯度方程在 FMO-MP2 水平上得到了公式化。对于分子簇(H2O)64 和具有跨越共价键的片段化的系统,带有静电二聚体近似的解析 FMO-MP2 能量梯度通过与相应的数值梯度进行比较,被证明是完整和准确的。所开发的梯度在 32 个通过千兆以太网连接的奔腾 4 节点上进行了并行化,并行效率约为 97%。