Suppr超能文献

二次收敛算法在轨道优化耦合簇双方法和轨道优化二级 Møller-Plesset 微扰理论中的应用。

Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory.

机构信息

Department of Chemistry, Middle East Technical University, Ankara 06531, Turkey.

出版信息

J Chem Phys. 2011 Sep 14;135(10):104103. doi: 10.1063/1.3631129.

Abstract

Using a Lagrangian-based approach, we present a more elegant derivation of the equations necessary for the variational optimization of the molecular orbitals (MOs) for the coupled-cluster doubles (CCD) method and second-order Møller-Plesset perturbation theory (MP2). These orbital-optimized theories are referred to as OO-CCD and OO-MP2 (or simply "OD" and "OMP2" for short), respectively. We also present an improved algorithm for orbital optimization in these methods. Explicit equations for response density matrices, the MO gradient, and the MO Hessian are reported both in spin-orbital and closed-shell spin-adapted forms. The Newton-Raphson algorithm is used for the optimization procedure using the MO gradient and Hessian. Further, orbital stability analyses are also carried out at correlated levels. The OD and OMP2 approaches are compared with the standard MP2, CCD, CCSD, and CCSD(T) methods. All these methods are applied to H(2)O, three diatomics, and the O(4)(+) molecule. Results demonstrate that the CCSD and OD methods give nearly identical results for H(2)O and diatomics; however, in symmetry-breaking problems as exemplified by O(4)(+), the OD method provides better results for vibrational frequencies. The OD method has further advantages over CCSD: its analytic gradients are easier to compute since there is no need to solve the coupled-perturbed equations for the orbital response, the computation of one-electron properties are easier because there is no response contribution to the particle density matrices, the variational optimized orbitals can be readily extended to allow inactive orbitals, it avoids spurious second-order poles in its response function, and its transition dipole moments are gauge invariant. The OMP2 has these same advantages over canonical MP2, making it promising for excited state properties via linear response theory. The quadratically convergent orbital-optimization procedure converges quickly for OMP2, and provides molecular properties that are somewhat different than those of MP2 for most of the test cases considered (although they are similar for H(2)O). Bond lengths are somewhat longer, and vibrational frequencies somewhat smaller, for OMP2 compared to MP2. In the difficult case of O(4)(+), results for several vibrational frequencies are significantly improved in going from MP2 to OMP2.

摘要

使用基于拉格朗日的方法,我们给出了一种更优雅的推导方法,用于对耦合簇双激发(CCD)方法和二阶 Møller-Plesset 微扰理论(MP2)的分子轨道(MO)进行变分优化的必要方程。这些轨道优化理论分别称为 OO-CCD 和 OO-MP2(简称“OD”和“OMP2”)。我们还提出了一种改进的这些方法中轨道优化的算法。报告了自旋轨道和闭壳自旋自适应形式的响应密度矩阵、MO 梯度和 MO Hessian 的显式方程。使用 MO 梯度和 Hessian ,采用牛顿-拉普森算法进行优化过程。此外,还在相关水平上进行了轨道稳定性分析。将 OD 和 OMP2 方法与标准 MP2、CCD、CCSD 和 CCSD(T)方法进行了比较。所有这些方法都应用于 H(2)O、三个双原子分子和 O(4)(+)分子。结果表明,对于 H(2)O 和双原子分子,CCSD 和 OD 方法给出了几乎相同的结果;然而,在 O(4)(+)等对称性破坏问题中,OD 方法提供了更好的振动频率结果。OD 方法相对于 CCSD 具有进一步的优势:它的解析梯度更容易计算,因为不需要为轨道响应求解耦合微扰方程,单电子性质的计算更容易,因为没有响应贡献到粒子密度矩阵,变分优化的轨道可以很容易地扩展到允许非活动轨道,它避免了响应函数中的虚假二阶极点,并且它的跃迁偶极矩是规范不变的。OMP2 相对于规范 MP2 具有相同的优势,使其通过线性响应理论在激发态性质方面具有潜力。对于 OMP2,二次收敛的轨道优化过程快速收敛,并为大多数考虑的测试案例(尽管对于 H(2)O 它们是相似的)提供了与 MP2 略有不同的分子性质。与 MP2 相比,OMP2 的键长稍长,振动频率稍小。在 O(4)(+)的困难情况下,从 MP2 到 OMP2 的转变显著提高了几个振动频率的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验