Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str, 3, 06120 Halle (Saale), Germany.
BMC Microbiol. 2011 Aug 1;11:173. doi: 10.1186/1471-2180-11-173.
Escherichia coli synthesizes three membrane-bound molybdenum- and selenocysteine-containing formate dehydrogenases, as well as up to four membrane-bound [NiFe]-hydrogenases. Two of the formate dehydrogenases (Fdh-N and Fdh-O) and two of the hydrogenases (Hyd-1 and Hyd-2) have their respective catalytic subunits located in the periplasm and these enzymes have been shown previously to oxidize formate and hydrogen, respectively, and thus function in energy metabolism. Mutants unable to synthesize the [NiFe]-hydrogenases retain a H₂: benzyl viologen oxidoreductase activity. The aim of this study was to identify the enzyme or enzymes responsible for this activity.
Here we report the identification of a new H₂: benzyl viologen oxidoreductase enzyme activity in E. coli that is independent of the [NiFe]-hydrogenases. This enzyme activity was originally identified after non-denaturing polyacrylamide gel electrophoresis and visualization of hydrogen-oxidizing activity by specific staining. Analysis of a crude extract derived from a variety of E. coli mutants unable to synthesize any [NiFe]-hydrogenase-associated enzyme activity revealed that the mutants retained this specific hydrogen-oxidizing activity. Enrichment of this enzyme activity from solubilised membrane fractions of the hydrogenase-negative mutant FTD147 by ion-exchange, hydrophobic interaction and size-exclusion chromatographies followed by mass spectrometric analysis identified the enzymes Fdh-N and Fdh-O. Analysis of defined mutants devoid of selenocysteine biosynthetic capacity or carrying deletions in the genes encoding the catalytic subunits of Fdh-N and Fdh-O demonstrated that both enzymes catalyze hydrogen activation. Fdh-N and Fdh-O can also transfer the electrons derived from oxidation of hydrogen to other redox dyes.
The related respiratory molybdo-selenoproteins Fdh-N and Fdh-O of Escherichia coli have hydrogen-oxidizing activity. These findings demonstrate that the energy-conserving selenium- and molybdenum-dependent formate dehydrogenases Fdh-N and Fdh-O exhibit a degree of promiscuity with respect to the electron donor they use and identify a new class of dihydrogen-oxidizing enzyme.
大肠杆菌合成三种膜结合的钼和硒代半胱氨酸含有甲酸脱氢酶,以及多达四种膜结合的 [NiFe]-氢化酶。两种甲酸脱氢酶(Fdh-N 和 Fdh-O)和两种氢化酶(Hyd-1 和 Hyd-2)的催化亚基位于周质中,这些酶先前已被证明分别氧化甲酸和氢气,因此在能量代谢中发挥作用。不能合成 [NiFe]-氢化酶的突变体保留 H₂:苯甲脒氧化还原酶活性。本研究的目的是鉴定负责该活性的酶或酶。
在这里,我们报告了在大肠杆菌中鉴定出一种新的 H₂:苯甲脒氧化还原酶活性,该活性独立于 [NiFe]-氢化酶。这种酶活性最初是在非变性聚丙烯酰胺凝胶电泳后通过特定染色可视化氢气氧化活性而鉴定的。分析来自各种不能合成任何 [NiFe]-氢化酶相关酶活性的大肠杆菌突变体的粗提取物表明,突变体保留了这种特定的氢气氧化活性。从缺乏氢化酶的突变体 FTD147 的可溶膜部分通过离子交换、疏水相互作用和大小排阻色谱法对这种酶活性进行富集,然后进行质谱分析,鉴定出 Fdh-N 和 Fdh-O 酶。分析缺乏硒代半胱氨酸生物合成能力或编码 Fdh-N 和 Fdh-O 催化亚基基因缺失的定义突变体表明,两种酶都能催化氢气的激活。Fdh-N 和 Fdh-O 还可以将源自氢气氧化的电子转移到其他氧化还原染料上。
大肠杆菌相关的呼吸钼-硒蛋白 Fdh-N 和 Fdh-O 具有氢气氧化活性。这些发现表明,能量保存的硒和钼依赖的甲酸脱氢酶 Fdh-N 和 Fdh-O 在它们使用的电子供体方面表现出一定的混杂性,并鉴定出一种新的类二氢氧化酶。