Suppr超能文献

颅内压信号脉搏起始检测的波形描述符。

Waveform descriptor for pulse onset detection of intracranial pressure signal.

机构信息

111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400030, China.

出版信息

Med Eng Phys. 2012 Mar;34(2):179-86. doi: 10.1016/j.medengphy.2011.07.008. Epub 2011 Jul 31.

Abstract

We present an algorithm to identify the onset of intracranial pressure (ICP) pulses. The algorithm creates a waveform descriptor to extract the feature of each local minimum of the waveform and then identifies the onset by comparing the feature with a customized template. The waveform descriptor is derived by transforming the vectors connecting a given point and the local waveform samples around it into log-polar coordinates and ranking them into uniform bins. Using an ICP dataset consisting of 40933 normal beats and 306 segments of artifacts and noise, we investigated the performance of our algorithm (waveform descriptor, WD), global minimum within a sliding window (GM) and two other algorithms originally proposed for arterial blood pressure (ABP) signal (slope sum function, SSF and pulse waveform delineator, PUD). As a result, all the four algorithms showed good performance and WD showed overall better one. At a tolerance level of 30 ms (i.e., the predicted onset and ground truth were considered as correctly matched if the distance between the two was equal or less than 30 ms), WD achieved a sensitivity of 0.9723 and PPV of 0.9475, GM achieved a sensitivity of 0.9226 and PPV of 0.8968, PUD achieved a sensitivity of 0.9599 and PPV of 0.9327 and SSF, a sensitivity of 0.9720 and PPV of 0.9136. The evaluation indicates that the algorithms are effective for identifying the onset of ICP pulses.

摘要

我们提出了一种识别颅内压(ICP)脉冲起始的算法。该算法创建了一个波形描述符,用于提取波形每个局部最小值的特征,然后通过将特征与自定义模板进行比较来识别起始点。波形描述符是通过将给定点与周围局部波形样本连接的向量转换为对数极坐标并将其排序到均匀的bins 中得到的。使用由 40933 个正常搏动和 306 个伪影和噪声段组成的 ICP 数据集,我们研究了我们的算法(波形描述符 WD)、滑动窗口内的全局最小值(GM)和另外两个最初为动脉血压(ABP)信号提出的算法(斜率和函数 SSF 和脉搏波形描绘符 PUD)的性能。结果表明,所有四种算法都表现出良好的性能,而 WD 总体上表现更好。在 30ms 的容差水平下(即,如果两个时间之间的距离等于或小于 30ms,则预测起始点和真实起始点被认为匹配正确),WD 的灵敏度为 0.9723,PPV 为 0.9475,GM 的灵敏度为 0.9226,PPV 为 0.8968,PUD 的灵敏度为 0.9599,PPV 为 0.9327,SSF 的灵敏度为 0.9720,PPV 为 0.9136。评估表明,这些算法对于识别 ICP 脉冲的起始是有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验