Suppr超能文献

海因里希事件的触发因素:底层变暖导致冰架崩塌。

Ice-shelf collapse from subsurface warming as a trigger for Heinrich events.

机构信息

Department of Geosciences, Oregon State University, Corvallis, OR 97331, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13415-9. doi: 10.1073/pnas.1104772108. Epub 2011 Aug 1.

Abstract

Episodic iceberg-discharge events from the Hudson Strait Ice Stream (HSIS) of the Laurentide Ice Sheet, referred to as Heinrich events, are commonly attributed to internal ice-sheet instabilities, but their systematic occurrence at the culmination of a large reduction in the Atlantic meridional overturning circulation (AMOC) indicates a climate control. We report Mg/Ca data on benthic foraminifera from an intermediate-depth site in the northwest Atlantic and results from a climate-model simulation that reveal basin-wide subsurface warming at the same time as large reductions in the AMOC, with temperature increasing by approximately 2 °C over a 1-2 kyr interval prior to a Heinrich event. In simulations with an ocean model coupled to a thermodynamically active ice shelf, the increase in subsurface temperature increases basal melt rate under an ice shelf fronting the HSIS by a factor of approximately 6. By analogy with recent observations in Antarctica, the resulting ice-shelf loss and attendant HSIS acceleration would produce a Heinrich event.

摘要

赫里宁德事件是指拉布拉多冰原哈德逊海峡冰流(HSIS)中冰架的间歇性冰山排放事件,通常归因于内部冰架不稳定性,但它们在北大西洋经向翻转环流(AMOC)大幅减少达到顶峰时系统发生,表明存在气候控制。我们报告了西北大西洋一个中深站点的底栖有孔虫的 Mg/Ca 数据和气候模型模拟的结果,该结果显示,在 AMOC 大幅减少的同时,整个盆地的地表水变暖,在赫里宁德事件之前约 1-2 千年的时间内,温度升高了约 2°C。在与热动力学活跃冰架耦合的海洋模型的模拟中,HSIS 前缘的海底温度升高使冰架下的基底融化率增加了约 6 倍。通过与最近在南极洲的观测结果类比,由此产生的冰架损失和伴随的 HSIS 加速将产生赫里宁德事件。

相似文献

1
Ice-shelf collapse from subsurface warming as a trigger for Heinrich events.
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13415-9. doi: 10.1073/pnas.1104772108. Epub 2011 Aug 1.
2
Subsurface ocean warming preceded Heinrich Events.
Nat Commun. 2022 Jul 21;13(1):4217. doi: 10.1038/s41467-022-31754-x.
3
North Pacific freshwater events linked to changes in glacial ocean circulation.
Nature. 2018 Jul;559(7713):241-245. doi: 10.1038/s41586-018-0276-y. Epub 2018 Jul 11.
4
Heinrich events triggered by ocean forcing and modulated by isostatic adjustment.
Nature. 2017 Feb 15;542(7641):332-334. doi: 10.1038/nature21069.
5
Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14348-52. doi: 10.1073/pnas.1207806109. Epub 2012 Aug 20.
7
Strong and deep Atlantic meridional overturning circulation during the last glacial cycle.
Nature. 2015 Jan 1;517(7532):73-6. doi: 10.1038/nature14059. Epub 2014 Dec 15.
8
Change in future climate due to Antarctic meltwater.
Nature. 2018 Dec;564(7734):53-58. doi: 10.1038/s41586-018-0712-z. Epub 2018 Nov 19.
9
Labrador Sea freshening at 8.5 ka BP caused by Hudson Bay Ice Saddle collapse.
Nat Commun. 2019 Feb 4;10(1):586. doi: 10.1038/s41467-019-08408-6.
10
Iceberg discharges of the last glacial period driven by oceanic circulation changes.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16350-4. doi: 10.1073/pnas.1306622110. Epub 2013 Sep 23.

引用本文的文献

1
Major sea level fall during the Pliocene M2 glaciation.
Nat Commun. 2025 Aug 16;16(1):7641. doi: 10.1038/s41467-025-62446-x.
2
Prevalent North Atlantic Deep Water during the Last Glacial Maximum and Heinrich Stadial 1.
Nat Geosci. 2025;18(5):410-416. doi: 10.1038/s41561-025-01685-5. Epub 2025 May 6.
3
Simulated millennial-scale climate variability driven by a convection-advection oscillator.
Clim Dyn. 2025;63(3):150. doi: 10.1007/s00382-025-07630-x. Epub 2025 Mar 7.
5
Enhanced ocean heat storage efficiency during the last deglaciation.
Sci Adv. 2024 Sep 20;10(38):eadp5156. doi: 10.1126/sciadv.adp5156.
6
Legacies of millennial-scale climate oscillations in contemporary biodiversity in eastern North America.
Philos Trans R Soc Lond B Biol Sci. 2024 May 27;379(1902):20230012. doi: 10.1098/rstb.2023.0012. Epub 2024 Apr 8.
7
A mechanism for reconciling the synchronisation of Heinrich events and Dansgaard-Oeschger cycles.
Nat Commun. 2024 Apr 5;15(1):2961. doi: 10.1038/s41467-024-47141-7.
8
Arctic and Antarctic forcing of ocean interior warming during the last deglaciation.
Sci Rep. 2023 Dec 16;13(1):22410. doi: 10.1038/s41598-023-49435-0.
9
Millennial-scale variability of the Antarctic ice sheet during the early Miocene.
Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2304152120. doi: 10.1073/pnas.2304152120. Epub 2023 Sep 18.

本文引用的文献

1
Transient simulation of last deglaciation with a new mechanism for Bolling-Allerod warming.
Science. 2009 Jul 17;325(5938):310-4. doi: 10.1126/science.1171041.
2
Iceberg discharges into the north atlantic on millennial time scales during the last glaciation.
Science. 1995 Feb 17;267(5200):1005-10. doi: 10.1126/science.267.5200.1005.
3
Orbital and millennial Antarctic climate variability over the past 800,000 years.
Science. 2007 Aug 10;317(5839):793-6. doi: 10.1126/science.1141038. Epub 2007 Jul 5.
4
Effect of sedimentation on ice-sheet grounding-line stability.
Science. 2007 Mar 30;315(5820):1838-41. doi: 10.1126/science.1138396. Epub 2007 Mar 1.
5
Radiocarbon variability in the western North Atlantic during the last deglaciation.
Science. 2005 Dec 2;310(5753):1469-73. doi: 10.1126/science.1114832. Epub 2005 Nov 3.
7
Rapid rise of sea level 19,000 years ago and its global implications.
Science. 2004 May 21;304(5674):1141-4. doi: 10.1126/science.1094449.
9
The salinity, temperature, and delta18O of the glacial deep ocean.
Science. 2002 Nov 29;298(5599):1769-73. doi: 10.1126/science.1076252.
10
Rapid bottom melting widespread near Antarctic Ice Sheet grounding lines.
Science. 2002 Jun 14;296(5575):2020-3. doi: 10.1126/science.1070942.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验