Suppr超能文献

非晶格自学习动力学蒙特卡罗方法:应用于面心立方(111)表面的二维团簇扩散

Off-lattice self-learning kinetic Monte Carlo: application to 2D cluster diffusion on the fcc(111) surface.

作者信息

Kara Abdelkader, Trushin Oleg, Yildirim Handan, Rahman Talat S

机构信息

Department of Physics, University of Central Florida, Orlando, FL 32816-2385, USA.

出版信息

J Phys Condens Matter. 2009 Feb 25;21(8):084213. doi: 10.1088/0953-8984/21/8/084213. Epub 2009 Jan 30.

Abstract

We report developments of the kinetic Monte Carlo (KMC) method with improved accuracy and increased versatility for the description of atomic diffusivity on metal surfaces. The on-lattice constraint built into our recently proposed self-learning KMC (SLKMC) (Trushin et al 2005 Phys. Rev. B 72 115401) is released, leaving atoms free to occupy 'off-lattice' positions to accommodate several processes responsible for small-cluster diffusion, periphery atom motion and heteroepitaxial growth. This technique combines the ideas embedded in the SLKMC method with a new pattern-recognition scheme fitted to an off-lattice model in which relative atomic positions are used to characterize and store configurations. Application of a combination of the 'drag' and the repulsive bias potential (RBP) methods for saddle point searches allows the treatment of concerted cluster, and multiple- and single-atom, motions on an equal footing. This tandem approach has helped reveal several new atomic mechanisms which contribute to cluster migration. We present applications of this off-lattice SLKMC to the diffusion of 2D islands of Cu (containing 2-30 atoms) on Cu and Ag(111), using the interatomic potential from the embedded-atom method. For the hetero-system Cu/Ag(111), this technique has uncovered mechanisms involving concerted motions such as shear, breathing and commensurate-incommensurate occupancies. Although the technique introduces complexities in storage and retrieval, it does not introduce noticeable extra computational cost.

摘要

我们报告了动力学蒙特卡罗(KMC)方法的进展,该方法在描述金属表面原子扩散率方面具有更高的精度和更强的通用性。我们最近提出的自学习KMC(SLKMC)(Trushin等人,2005年,《物理评论B》72卷,115401页)中内置的晶格约束被解除,原子可以自由占据“非晶格”位置,以适应负责小团簇扩散、外围原子运动和异质外延生长的多个过程。该技术将SLKMC方法中蕴含的思想与一种新的模式识别方案相结合,该方案适用于一种非晶格模型,其中相对原子位置用于表征和存储构型。应用“拖曳”和排斥偏置势(RBP)方法相结合进行鞍点搜索,可以在同等基础上处理协同团簇以及多原子和单原子运动。这种串联方法有助于揭示几种有助于团簇迁移的新原子机制。我们使用嵌入原子方法的原子间势,展示了这种非晶格SLKMC在Cu(含2 - 30个原子)二维岛在Cu和Ag(111)上扩散的应用。对于异质系统Cu/Ag(111),该技术揭示了涉及剪切、呼吸和 commensurate - incommensurate占据等协同运动的机制。尽管该技术在存储和检索方面引入了复杂性,但并未引入明显的额外计算成本。

相似文献

1
Off-lattice self-learning kinetic Monte Carlo: application to 2D cluster diffusion on the fcc(111) surface.
J Phys Condens Matter. 2009 Feb 25;21(8):084213. doi: 10.1088/0953-8984/21/8/084213. Epub 2009 Jan 30.
2
An off-lattice, self-learning kinetic Monte Carlo method using local environments.
J Chem Phys. 2011 Nov 7;135(17):174103. doi: 10.1063/1.3657834.
3
Extended pattern recognition scheme for self-learning kinetic Monte Carlo simulations.
J Phys Condens Matter. 2012 Sep 5;24(35):354004. doi: 10.1088/0953-8984/24/35/354004. Epub 2012 Aug 16.
4
A three-dimensional self-learning kinetic Monte Carlo model: application to Ag(111).
J Phys Condens Matter. 2012 Dec 5;24(48):485005. doi: 10.1088/0953-8984/24/48/485005. Epub 2012 Oct 26.
5
Self-learning kinetic Monte Carlo simulations of Al diffusion in Mg.
J Phys Condens Matter. 2016 Apr 20;28(15):155001. doi: 10.1088/0953-8984/28/15/155001. Epub 2016 Mar 16.
6
The crossover from collective motion to periphery diffusion for two-dimensional adatom-islands on Cu(111).
J Phys Condens Matter. 2011 Nov 23;23(46):462201. doi: 10.1088/0953-8984/23/46/462201. Epub 2011 Oct 21.
7
Self-learning kinetic Monte Carlo simulations of self-diffusion of small Ag islands on the Ag(111) surface.
J Phys Condens Matter. 2016 Jan 20;28(2):025001. doi: 10.1088/0953-8984/28/2/025001. Epub 2015 Dec 11.
8
Parallel kinetic Monte Carlo simulations of Ag(111) island coarsening using a large database.
J Phys Condens Matter. 2009 Feb 25;21(8):084214. doi: 10.1088/0953-8984/21/8/084214. Epub 2009 Jan 30.
9
Vibrational contribution to the thermodynamics of nanosized precipitates: vacancy-copper clusters in bcc-Fe.
J Phys Condens Matter. 2012 Jun 6;24(22):225402. doi: 10.1088/0953-8984/24/22/225402. Epub 2012 May 4.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验