Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Duisburg, Germany.
J Phys Condens Matter. 2012 Dec 5;24(48):485005. doi: 10.1088/0953-8984/24/48/485005. Epub 2012 Oct 26.
The reliability of kinetic Monte Carlo (KMC) simulations depends on accurate transition rates. The self-learning KMC method (Trushin et al 2005 Phys. Rev. B 72 115401) combines the accuracy of rates calculated from a realistic potential with the efficiency of a rate catalog, using a pattern recognition scheme. This work expands the original two-dimensional method to three dimensions. The concomitant huge increase in the number of rate calculations on the fly needed can be avoided by setting up an initial database, containing exact activation energies calculated for processes gathered from a simpler KMC model. To provide two representative examples, the model is applied to the diffusion of Ag monolayer islands on Ag(111), and the homoepitaxial growth of Ag on Ag(111) at low temperatures.
动力学蒙特卡罗(KMC)模拟的可靠性取决于准确的跃迁率。自学习 KMC 方法(Trushin 等人,2005 年,Phys. Rev. B 72,115401)将从实际势能计算得出的速率的准确性与速率目录的效率相结合,使用模式识别方案。这项工作将原始的二维方法扩展到三维。通过建立一个初始数据库,可以避免在飞行中进行大量的速率计算,该数据库包含从更简单的 KMC 模型收集的过程的精确激活能。为了提供两个有代表性的例子,该模型被应用于 Ag 单层岛在 Ag(111)上的扩散,以及 Ag 在 Ag(111)上的低温同质外延生长。