Suppr超能文献

群体智能元启发式算法在数据分析和优化中的增强应用。

Swarm intelligence metaheuristics for enhanced data analysis and optimization.

机构信息

Department of Chemistry, California Lutheran University, 60 West Olsen Road, Thousand Oaks, CA 91360, USA.

出版信息

Analyst. 2011 Sep 21;136(18):3587-94. doi: 10.1039/c1an15369b. Epub 2011 Aug 5.

Abstract

The swarm intelligence (SI) computing paradigm has proven itself as a comprehensive means of solving complicated analytical chemistry problems by emulating biologically-inspired processes. As global optimum search metaheuristics, associated algorithms have been widely used in training neural networks, function optimization, prediction and classification, and in a variety of process-based analytical applications. The goal of this review is to provide readers with critical insight into the utility of swarm intelligence tools as methods for solving complex chemical problems. Consideration will be given to algorithm development, ease of implementation and model performance, detailing subsequent influences on a number of application areas in the analytical, bioanalytical and detection sciences.

摘要

群体智能 (SI) 计算范式已被证明是通过模拟受生物启发的过程来解决复杂分析化学问题的综合手段。作为全局最优搜索元启发式算法,相关算法已广泛应用于神经网络训练、函数优化、预测和分类,以及各种基于过程的分析应用中。本综述的目的是为读者提供对群体智能工具作为解决复杂化学问题的方法的实用价值的重要见解。将考虑算法开发、实施的难易程度和模型性能,详细说明它们对分析、生物分析和检测科学中许多应用领域的后续影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验