Suppr超能文献

在已鉴定的视觉中间神经元之间,分级膜电位变化和尖峰的突触传递。

Synaptic transmission of graded membrane potential changes and spikes between identified visual interneurons.

机构信息

Department of Neurobiology, Faculty of Biology, Bielefeld University, Postfach 10 01 31, 33501 Bielefeld, Germany.

出版信息

Eur J Neurosci. 2011 Sep;34(5):705-16. doi: 10.1111/j.1460-9568.2011.07801.x. Epub 2011 Aug 8.

Abstract

Several physiological mechanisms allow sensory information to be propagated in neuronal networks. According to the conventional view of signal processing, graded changes of membrane potential at the dendrite are converted into a sequence of spikes. However, in many sensory receptors and several types of mostly invertebrate neurons, graded potential changes have a direct impact on the cells' output signals. The visual system of the blowfly Calliphora vicina is a good model system to study synaptic transmission in vivo during sensory stimulation. We recorded extracellularly from an identified motion-sensitive neuron while simultaneously measuring and controlling the membrane potential of individual elements of its presynaptic input ensemble. The membrane potential in the terminals of the presynaptic neuron is composed of two components, graded membrane potential changes and action potentials. To dissociate the roles of action potentials and graded potential changes in synaptic transmission we used voltage-clamp-controlled current-clamp techniques to suppress the graded membrane potential changes without affecting action potentials. Our results indicate that both the graded potential and the action potentials of the presynaptic neuron have an impact on the spiking characteristics of the postsynaptic neuron. Although a tight temporal coupling between pre- and postsynaptic spikes exists, the timing between these spikes is also affected by graded potential changes. We propose that the control of synaptic transfer of a dynamically complex signal by graded changes in membrane potential and spikes is useful to enable a temporally precise coupling of spikes in response to sudden transitions in stimulus intensity.

摘要

几种生理机制允许感觉信息在神经元网络中传播。根据信号处理的传统观点,树突膜电位的渐变变化被转化为一连串的尖峰。然而,在许多感觉受体和几种类型的主要无脊椎神经元中,渐变电位变化直接影响细胞的输出信号。黑腹果蝇 Calliphora vicina 的视觉系统是一个很好的模型系统,可以在感觉刺激期间研究体内的突触传递。我们在同时测量和控制其突触前输入集合的各个元素的膜电位的情况下,从一个已鉴定的运动敏感神经元中进行了细胞外记录。突触前神经元的膜电位由两个组成部分组成,渐变膜电位变化和动作电位。为了分离动作电位和渐变电位变化在突触传递中的作用,我们使用电压钳控电流钳技术来抑制渐变膜电位变化而不影响动作电位。我们的结果表明,突触前神经元的渐变电位和动作电位都对突触后神经元的放电特征有影响。尽管在突触前和突触后尖峰之间存在紧密的时间耦合,但这些尖峰之间的时间也受到渐变电位变化的影响。我们提出,通过膜电位和尖峰的渐变变化来控制动态复杂信号的突触传递,对于响应刺激强度的突然变化而实现尖峰的时间精确耦合是有用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验