Suppr超能文献

血管紧张素 II 刺激离体输尿管芽的体外分支形态发生。

Angiotensin II stimulates in vitro branching morphogenesis of the isolated ureteric bud.

机构信息

Division of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.

出版信息

Mech Dev. 2011 Sep-Dec;128(7-10):359-67. doi: 10.1016/j.mod.2011.07.002. Epub 2011 Jul 23.

Abstract

Mutations in the renin-angiotensin system (RAS) genes are associated with congenital anomalies of the kidney and urinary tract (CAKUT). As angiotensin (Ang) II, the principal effector peptide growth factor of the RAS, stimulates ureteric bud (UB) branching in whole intact embryonic (E) metanephroi, defects in UB morphogenesis may be causally linked to CAKUT observed under conditions of disrupted RAS. In the present study, using the isolated intact UB (iUB) assay, we tested the hypothesis that Ang II stimulates UB morphogenesis by directly acting on the UB, identified Ang II target genes in the iUB by microarray and examined the effect of Ang II on UB cell migration in vitro. We show that isolated E11.5 mouse iUBs express Ang II AT(1) and AT(2) receptor mRNA. Treatment of E11.5 iUBs grown in collagen matrix gels with Ang II (10(-5)M) increases the number of iUB tips after 48h of culture compared to control (4.8±0.4 vs. 2.4±0.2, p<0.01). A number of genes required for UB branching as well as novel genes whose role in UB development is currently unknown are targets of Ang II signaling in the iUB. In addition, Ang II increases UB cell migration (346±5.1 vs. 275±4.4, p<0.01) in vitro. In summary, Ang II stimulates UB cell migration and directly induces morphogenetic response in the iUB. We conclude that Ang II-regulated genes in the iUB may be important mediators of Ang II-induced UB branching. We hypothesize that Ang II-dependent cell movements play an important role in UB branching morphogenesis.

摘要

肾素-血管紧张素系统 (RAS) 基因突变与先天性肾和尿路异常 (CAKUT) 有关。血管紧张素 (Ang) II 是 RAS 的主要效应肽生长因子,它刺激完整胚胎 (E) 后肾芽 (UB) 的分支,因此 UB 形态发生缺陷可能与 RAS 破坏条件下观察到的 CAKUT 有关。在本研究中,我们使用分离的完整 UB (iUB) 测定法,测试了 Ang II 通过直接作用于 UB 刺激 UB 形态发生的假设,通过微阵列鉴定了 iUB 中的 Ang II 靶基因,并研究了 Ang II 对 UB 细胞体外迁移的影响。我们表明,分离的 E11.5 小鼠 iUB 表达 Ang II AT(1) 和 AT(2) 受体 mRNA。与对照相比,在胶原基质凝胶中培养的 E11.5 iUB 用 Ang II (10(-5)M) 处理 48 小时后,iUB 尖端的数量增加 (4.8±0.4 对 2.4±0.2,p<0.01)。一些分支所需的基因以及目前尚不清楚其在 UB 发育中作用的新基因是 iUB 中 Ang II 信号的靶基因。此外,Ang II 增加了 UB 细胞迁移 (346±5.1 对 275±4.4,p<0.01)。总之,Ang II 刺激 UB 细胞迁移并直接诱导 iUB 形态发生反应。我们得出结论,iUB 中的 Ang II 调节基因可能是 Ang II 诱导的 UB 分支的重要介质。我们假设 Ang II 依赖性细胞运动在 UB 分支形态发生中起重要作用。

相似文献

1
Angiotensin II stimulates in vitro branching morphogenesis of the isolated ureteric bud.
Mech Dev. 2011 Sep-Dec;128(7-10):359-67. doi: 10.1016/j.mod.2011.07.002. Epub 2011 Jul 23.
2
Angiotensin II-induced activation of c-Ret signaling is critical in ureteric bud branching morphogenesis.
Mech Dev. 2010 Jan-Feb;127(1-2):21-7. doi: 10.1016/j.mod.2009.11.004. Epub 2009 Dec 2.
3
Angiotensin II type 1 receptor-EGF receptor cross-talk regulates ureteric bud branching morphogenesis.
J Am Soc Nephrol. 2006 Apr;17(4):1005-14. doi: 10.1681/ASN.2005080803. Epub 2006 Feb 22.
5
Angiotensin II AT2 receptor regulates ureteric bud morphogenesis.
Am J Physiol Renal Physiol. 2010 Mar;298(3):F807-17. doi: 10.1152/ajprenal.00147.2009. Epub 2009 Dec 23.
7
Foxd1 is an upstream regulator of the renin-angiotensin system during metanephric kidney development.
Pediatr Res. 2017 Nov;82(5):855-862. doi: 10.1038/pr.2017.157. Epub 2017 Aug 2.
8
A role for angiotensin II AT1 receptors in ureteric bud cell branching.
Am J Physiol Renal Physiol. 2003 Aug;285(2):F199-207. doi: 10.1152/ajprenal.00401.2002. Epub 2003 Mar 25.
9
Renin-angiotensin system in ureteric bud branching morphogenesis: insights into the mechanisms.
Pediatr Nephrol. 2011 Sep;26(9):1499-512. doi: 10.1007/s00467-011-1820-2. Epub 2011 Feb 26.
10
Hypothesis: a new role for the Renin-Angiotensin system in ureteric bud branching.
Organogenesis. 2004 Jul;1(1):26-32. doi: 10.4161/org.1.1.1071.

引用本文的文献

1
Programmed Adult Kidney Disease: Importance of Fetal Environment.
Front Physiol. 2020 Sep 25;11:586290. doi: 10.3389/fphys.2020.586290. eCollection 2020.
2
When Less or More Isn't Enough: Renal Maldevelopment Arising From Disequilibrium in the Renin-Angiotensin System.
Front Pediatr. 2019 Jul 17;7:296. doi: 10.3389/fped.2019.00296. eCollection 2019.
4
Foxd1 is an upstream regulator of the renin-angiotensin system during metanephric kidney development.
Pediatr Res. 2017 Nov;82(5):855-862. doi: 10.1038/pr.2017.157. Epub 2017 Aug 2.
5
Vascular versus tubular renin: role in kidney development.
Am J Physiol Regul Integr Comp Physiol. 2015 Sep 15;309(6):R650-7. doi: 10.1152/ajpregu.00313.2015. Epub 2015 Aug 5.
6
The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning.
Mol Reprod Dev. 2015 Mar;82(3):151-66. doi: 10.1002/mrd.22462. Epub 2015 Mar 17.
7
Renin-angiotensin system in ureteric bud branching morphogenesis: implications for kidney disease.
Pediatr Nephrol. 2014 Apr;29(4):609-20. doi: 10.1007/s00467-013-2616-3. Epub 2013 Sep 7.
8
Deletion of the prorenin receptor from the ureteric bud causes renal hypodysplasia.
PLoS One. 2013 May 21;8(5):e63835. doi: 10.1371/journal.pone.0063835. Print 2013.
9
The angiotensin converting enzyme insertion/deletion polymorphism alters the response of muscle energy supply lines to exercise.
Eur J Appl Physiol. 2013 Jul;113(7):1719-29. doi: 10.1007/s00421-012-2583-6. Epub 2013 Feb 9.

本文引用的文献

1
The GDNF target Vsnl1 marks the ureteric tip.
J Am Soc Nephrol. 2011 Feb;22(2):274-84. doi: 10.1681/ASN.2010030316.
2
Chemokine-mediated distribution of dendritic cell subsets in renal cell carcinoma.
BMC Cancer. 2010 Oct 22;10:578. doi: 10.1186/1471-2407-10-578.
3
Genetics of congenital anomalies of the kidney and urinary tract.
Pediatr Nephrol. 2011 Mar;26(3):353-64. doi: 10.1007/s00467-010-1629-4. Epub 2010 Aug 27.
4
Glutamate receptor ion channels: structure, regulation, and function.
Pharmacol Rev. 2010 Sep;62(3):405-96. doi: 10.1124/pr.109.002451.
6
Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development.
Dev Cell. 2010 May 18;18(5):698-712. doi: 10.1016/j.devcel.2010.04.008.
7
The transcription factors Etv4 and Etv5 mediate formation of the ureteric bud tip domain during kidney development.
Development. 2010 Jun;137(12):1975-9. doi: 10.1242/dev.051656. Epub 2010 May 12.
8
AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells.
Biochem Biophys Res Commun. 2010 Jun 4;396(3):656-61. doi: 10.1016/j.bbrc.2010.04.151. Epub 2010 May 8.
9
CCR6 recruits regulatory T cells and Th17 cells to the kidney in glomerulonephritis.
J Am Soc Nephrol. 2010 Jun;21(6):974-85. doi: 10.1681/ASN.2009070741. Epub 2010 Mar 18.
10
The small GTPase Rif is an alternative trigger for the formation of actin stress fibers in epithelial cells.
J Cell Sci. 2010 Apr 15;123(Pt 8):1247-52. doi: 10.1242/jcs.061754. Epub 2010 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验