Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA.
Methods. 2011 Oct;55(2):182-7. doi: 10.1016/j.ymeth.2011.07.003. Epub 2011 Jul 27.
Protein interactions are at the basis of all processes in living organisms. In particular, regulatory proteins do not act alone but participate in multifaceted sets of interactions that are organized into complex networks. In herpes simplex virus (HSV-1) infected cells, viral proteins interact with cellular proteins and with other viral proteins to form the protein complexes required for virus production, including transcription complexes, replication complexes and virion assembly complexes. While a number of methods have been developed to investigate protein-protein interactions such as coimmunoprecipitation, GST-binding assays and yeast 2-hybrid analyses, these approaches require removal of the proteins from the cellular environment and do not provide information on the spatial localization of the protein-protein interaction in living cells. The fluorescence based approach Bimolecular Fluorescence Complementation (BiFC) allows direct visualization of the subcellular localization of the protein complex in living cells. In BiFC, two halves of a fluorescent protein are fused to each of two interacting proteins of interest, resulting in nonfluorescent fusion proteins. Interaction of the protein partners tethers the fused fluorescent fragments in close proximity, which facilitates their association and restoration of fluorescence. Two limitations of BiFC are that there is a delay between the time that the interacting proteins associate and fluorescence complex formation and thus complex formation cannot be measured in real-time, and fluorescence complex formation is irreversible in vivo. Despite these limitations, BiFC is a powerful and sensitive approach that can be performed using standard molecular biology and cell culture protocols and a fluorescence microscope.
蛋白质相互作用是所有生命活动的基础。特别是,调节蛋白不是单独起作用,而是参与到多方面的相互作用中,这些相互作用被组织成复杂的网络。在单纯疱疹病毒(HSV-1)感染的细胞中,病毒蛋白与细胞蛋白以及其他病毒蛋白相互作用,形成病毒产生所需的蛋白质复合物,包括转录复合物、复制复合物和病毒组装复合物。虽然已经开发了许多方法来研究蛋白质-蛋白质相互作用,如共免疫沉淀、GST 结合测定和酵母 2 杂交分析,但这些方法需要从细胞环境中去除蛋白质,并且不能提供蛋白质-蛋白质相互作用在活细胞中空间定位的信息。基于荧光的双分子荧光互补(BiFC)方法允许直接可视化活细胞中蛋白质复合物的亚细胞定位。在 BiFC 中,将荧光蛋白的两半分别融合到两个感兴趣的相互作用蛋白的每一个上,产生非荧光融合蛋白。蛋白伴侣的相互作用将融合的荧光片段系在一起,促进它们的关联和荧光的恢复。BiFC 有两个限制:相互作用蛋白的关联和荧光复合物的形成之间存在时间延迟,因此无法实时测量复合物的形成,并且复合物的形成在体内是不可逆的。尽管存在这些限制,但 BiFC 是一种强大而敏感的方法,可以使用标准的分子生物学和细胞培养方案以及荧光显微镜来进行。