Suppr超能文献

古菌天冬酰胺合成酶的晶体结构:与天冬氨酰-tRNA 和天冬酰胺-tRNA 合成酶的相互关系。

Crystal structure of the archaeal asparagine synthetase: interrelation with aspartyl-tRNA and asparaginyl-tRNA synthetases.

机构信息

Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, UPR 9002, 15 rue René Descartes, 67084 Strasbourg Cedex, France.

出版信息

J Mol Biol. 2011 Sep 23;412(3):437-52. doi: 10.1016/j.jmb.2011.07.050. Epub 2011 Jul 28.

Abstract

Asparagine synthetase A (AsnA) catalyzes asparagine synthesis using aspartate, ATP, and ammonia as substrates. Asparagine is formed in two steps: the β-carboxylate group of aspartate is first activated by ATP to form an aminoacyl-AMP before its amidation by a nucleophilic attack with an ammonium ion. Interestingly, this mechanism of amino acid activation resembles that used by aminoacyl-tRNA synthetases, which first activate the α-carboxylate group of the amino acid to form also an aminoacyl-AMP before they transfer the activated amino acid onto the cognate tRNA. In a previous investigation, we have shown that the open reading frame of Pyrococcus abyssi annotated as asparaginyl-tRNA synthetase (AsnRS) 2 is, in fact, an archaeal asparagine synthetase A (AS-AR) that evolved from an ancestral aspartyl-tRNA synthetase (AspRS). We present here the crystal structure of this AS-AR. The fold of this protein is similar to that of bacterial AsnA and resembles the catalytic cores of AspRS and AsnRS. The high-resolution structures of AS-AR associated with its substrates and end-products help to understand the reaction mechanism of asparagine formation and release. A comparison of the catalytic core of AS-AR with those of archaeal AspRS and AsnRS and with that of bacterial AsnA reveals a strong conservation. This study uncovers how the active site of the ancestral AspRS rearranged throughout evolution to transform an enzyme activating the α-carboxylate group into an enzyme that is able to activate the β-carboxylate group of aspartate, which can react with ammonia instead of tRNA.

摘要

天冬酰胺合成酶 A(AsnA)使用天冬氨酸、ATP 和氨作为底物催化天冬酰胺合成。天冬酰胺的形成分两步进行:天冬氨酸的β-羧基首先被 ATP 激活,形成氨酰-AMP,然后再被铵离子亲核攻击进行酰胺化。有趣的是,这种氨基酸激活机制类似于氨酰-tRNA 合成酶所使用的机制,氨酰-tRNA 合成酶首先激活氨基酸的α-羧基,也形成氨酰-AMP,然后再将活化的氨基酸转移到相应的 tRNA 上。在之前的研究中,我们已经表明,Pyrococcus abyssi 注释为天冬酰胺-tRNA 合成酶(AsnRS)2 的开放阅读框实际上是一种古菌天冬酰胺合成酶 A(AS-AR),它是从祖先的天冬氨酰-tRNA 合成酶(AspRS)进化而来的。我们在这里展示了这种 AS-AR 的晶体结构。该蛋白质的折叠与细菌 AsnA 相似,类似于 AspRS 和 AsnRS 的催化核心。AS-AR 与其底物和终产物的高分辨率结构有助于理解天冬酰胺形成和释放的反应机制。AS-AR 的催化核心与古菌 AspRS 和 AsnRS 的催化核心以及细菌 AsnA 的催化核心进行比较,发现它们具有很强的保守性。这项研究揭示了祖先 AspRS 的活性位点如何在进化过程中重新排列,将激活α-羧基的酶转化为能够激活天冬氨酸β-羧基的酶,该酶可以与氨而不是 tRNA 反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验