Suppr超能文献

在细菌表达系统中功能完备的血小板反应蛋白-1第1型重复序列的表达、纯化及结构表征

Expression, purification and structural characterization of functionally replete thrombospondin-1 type 1 repeats in a bacterial expression system.

作者信息

Klenotic Philip A, Page Richard C, Misra Saurav, Silverstein Roy L

机构信息

Department of Cell Biology, NC10, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.

出版信息

Protein Expr Purif. 2011 Dec;80(2):253-9. doi: 10.1016/j.pep.2011.07.010. Epub 2011 Jul 29.

Abstract

The matrix glycoprotein thrombospondin-1 (TSP-1) is a prominent regulator of endothelial cells and angiogenesis. The anti-angiogenic and anti-tumorigenic properties of TSP-1 are in part mediated by the TSP-1 type 1 repeat domains 2 and 3, TSR(2,3). Here, we describe the expression and purification of human TSR(2,3) in milligram quantities from an Escherichia coli expression system. Microvascular endothelial cell migration assays and binding assays with a canonical TSP-1 ligand, histidine-rich glycoprotein (HRGP), indicate that recombinant TSR(2,3) exhibits anti-chemotactic and ligand binding properties similar to full length TSP-1. Furthermore, we determined the structure of E. coli expressed TSR(2,3) by X-ray crystallography at 2.4Å and found the structure to be identical to the existing TSR(2,3) crystal structure determined from a Drosophila expression system. The TSR(2,3) expression and purification protocol developed in this study allows for facile expression of TSR(2,3) for biochemical and biophysical studies, and will aid in the elucidation of the molecular mechanisms of TSP-1 anti-angiogenic and anti-tumorigenic activities.

摘要

基质糖蛋白血小板反应蛋白-1(TSP-1)是内皮细胞和血管生成的重要调节因子。TSP-1的抗血管生成和抗肿瘤特性部分由TSP-1 1型重复结构域2和3(TSR(2,3))介导。在此,我们描述了从大肠杆菌表达系统中以毫克量表达和纯化人TSR(2,3)的方法。微血管内皮细胞迁移试验以及与典型TSP-1配体富含组氨酸糖蛋白(HRGP)的结合试验表明,重组TSR(2,3)具有与全长TSP-1相似的抗趋化性和配体结合特性。此外,我们通过X射线晶体学在2.4Å分辨率下确定了大肠杆菌表达的TSR(2,3)的结构,发现该结构与从果蝇表达系统确定的现有TSR(2,3)晶体结构相同。本研究中开发的TSR(2,3)表达和纯化方案便于为生化和生物物理研究表达TSR(2,3),并将有助于阐明TSP-1抗血管生成和抗肿瘤活性的分子机制。

相似文献

2
CD36: a critical anti-angiogenic receptor.
Front Biosci. 2003 Sep 1;8:s874-82. doi: 10.2741/1168.
3
CD36-TSP-HRGP interactions in the regulation of angiogenesis.
Curr Pharm Des. 2007;13(35):3559-67. doi: 10.2174/138161207782794185.
4
Histidine-rich glycoprotein inhibits the antiangiogenic effect of thrombospondin-1.
J Clin Invest. 2001 Jan;107(1):45-52. doi: 10.1172/JCI9061.
5
Context dependent role of the CD36--thrombospondin--histidine-rich glycoprotein axis in tumor angiogenesis and growth.
PLoS One. 2012;7(7):e40033. doi: 10.1371/journal.pone.0040033. Epub 2012 Jul 10.
6
Molecular basis of antiangiogenic thrombospondin-1 type 1 repeat domain interactions with CD36.
Arterioscler Thromb Vasc Biol. 2013 Jul;33(7):1655-62. doi: 10.1161/ATVBAHA.113.301523. Epub 2013 May 2.
7
The antiangiogenic effect of thrombospondin-2 is mediated by CD36 and modulated by histidine-rich glycoprotein.
Matrix Biol. 2005 Feb;24(1):27-34. doi: 10.1016/j.matbio.2004.11.005. Epub 2004 Dec 30.
10
Thrombospondin-1 (TSP-1), a new bone morphogenetic protein-2 and -4 (BMP-2/4) antagonist identified in pituitary cells.
J Biol Chem. 2017 Sep 15;292(37):15352-15368. doi: 10.1074/jbc.M116.736207. Epub 2017 Jul 26.

引用本文的文献

1
Human Properdin Released By Infiltrating Neutrophils Can Modulate Influenza A Virus Infection.
Front Immunol. 2021 Dec 9;12:747654. doi: 10.3389/fimmu.2021.747654. eCollection 2021.
2
3
CD36 Enhances Vascular Smooth Muscle Cell Proliferation and Development of Neointimal Hyperplasia.
Arterioscler Thromb Vasc Biol. 2019 Feb;39(2):263-275. doi: 10.1161/ATVBAHA.118.312186.
4
The Most N-Terminal Region of THSD7A Is the Predominant Target for Autoimmunity in THSD7A-Associated Membranous Nephropathy.
J Am Soc Nephrol. 2018 May;29(5):1536-1548. doi: 10.1681/ASN.2017070805. Epub 2018 Mar 19.
5
Thrombospondins: Purification of human platelet thrombospondin-1.
Methods Cell Biol. 2018;143:347-369. doi: 10.1016/bs.mcb.2017.08.021. Epub 2017 Nov 6.
6
Inhibition activity of a disulfide-stabilized diabody against basic fibroblast growth factor in lung cancer.
Oncotarget. 2017 Mar 21;8(12):20187-20197. doi: 10.18632/oncotarget.15556.
8
Phosphatidylserine receptors: enhancers of enveloped virus entry and infection.
Virology. 2014 Nov;468-470:565-580. doi: 10.1016/j.virol.2014.09.009. Epub 2014 Sep 29.
9
Thrombospondin-1 triggers macrophage IL-10 production and promotes resolution of experimental lung injury.
Mucosal Immunol. 2014 Mar;7(2):440-8. doi: 10.1038/mi.2013.63. Epub 2013 Sep 18.
10
Structural basis for the stabilization of the complement alternative pathway C3 convertase by properdin.
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13504-9. doi: 10.1073/pnas.1309618110. Epub 2013 Jul 30.

本文引用的文献

1
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.
2
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
3
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
4
CD36-TSP-HRGP interactions in the regulation of angiogenesis.
Curr Pharm Des. 2007;13(35):3559-67. doi: 10.2174/138161207782794185.
5
Thrombospondins in cancer.
Cell Mol Life Sci. 2008 Mar;65(5):700-12. doi: 10.1007/s00018-007-7486-z.
6
The evolving role of thrombospondin-1 in hemostasis and vascular biology.
Cell Mol Life Sci. 2008 Mar;65(5):713-27. doi: 10.1007/s00018-007-7487-y.
7
MolProbity: all-atom contacts and structure validation for proteins and nucleic acids.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83. doi: 10.1093/nar/gkm216. Epub 2007 Apr 22.
8
Optimal description of a protein structure in terms of multiple groups undergoing TLS motion.
Acta Crystallogr D Biol Crystallogr. 2006 Apr;62(Pt 4):439-50. doi: 10.1107/S0907444906005270. Epub 2006 Mar 18.
9
Angiogenesis: update 2005.
J Thromb Haemost. 2005 Aug;3(8):1835-42. doi: 10.1111/j.1538-7836.2005.01361.x.
10
From gene to protein: a review of new and enabling technologies for multi-parallel protein expression.
Protein Expr Purif. 2005 Mar;40(1):1-22. doi: 10.1016/j.pep.2004.10.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验