Suppr超能文献

曲折纤维增强软材料各向异性有限变形超弹性行为的本构模型

Constitutive Modeling of Anisotropic Finite-Deformation Hyperelastic Behaviors of Soft Materials Reinforced by Tortuous Fibers.

作者信息

Kao Philip H, Lammers Steven R, Hunter Kendall, Stenmark Kurt R, Shandas Robin, Qi H Jerry

机构信息

Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309.

出版信息

Int J Struct Changes Sol. 2010 Apr;2(1):19-29.

Abstract

Many biological materials are composites composed of a soft matrix reinforced with stiffer fibers. These stiffer fibers may have a tortuous shape and wind through the soft matrix. At small material deformation, these fibers deform in a bending mode and contribute little to the material stiffness; at large material deformation, these fibers deform in a stretching mode and induce a stiffening effect in the material behavior. The transition from bending mode deformation to stretching mode deformation yields a characteristic J-shape stress-strain curve. In addition, the spatial distribution of these fibers may render the composite an anisotropic behavior. In this paper, we present an anisotropic finite-deformation hyperelastic constitutive model for such materials. Here, the matrix is modeled as an isotropic neo-Hookean material. "The behaviors of single tortuous fiber are represented by a crimped fiber model". The anisotropic behavior is introduced by a structure tensor representing the effective orientation distribution of crimped fibers. Parametric studies show the effect of fiber tortuosity and fiber orientation distribution on the overall stress-strain behaviors of the materials.

摘要

许多生物材料是由较硬的纤维增强的软质基体组成的复合材料。这些较硬的纤维可能具有曲折的形状,并蜿蜒穿过软质基体。在材料发生小变形时,这些纤维以弯曲模式变形,对材料刚度的贡献很小;在材料发生大变形时,这些纤维以拉伸模式变形,并在材料行为中产生硬化效应。从弯曲模式变形到拉伸模式变形的转变产生了特征性的J形应力-应变曲线。此外,这些纤维的空间分布可能使复合材料呈现各向异性行为。在本文中,我们提出了一种针对此类材料的各向异性有限变形超弹性本构模型。在此,基体被建模为各向同性的新胡克材料。“单根曲折纤维的行为由卷曲纤维模型表示”。通过表示卷曲纤维有效取向分布的结构张量引入各向异性行为。参数研究表明了纤维曲折度和纤维取向分布对材料整体应力-应变行为的影响。

相似文献

2
Finite Bending of Fiber-Reinforced Visco-Hyperelastic Material: Analytical Approach and FEM.
Materials (Basel). 2023 Dec 19;17(1):5. doi: 10.3390/ma17010005.
3
A hyperelastic-damage model to study the anisotropic mechanical behavior of coral-hydrogel bio-composite.
J Mech Behav Biomed Mater. 2022 Feb;126:105054. doi: 10.1016/j.jmbbm.2021.105054. Epub 2021 Dec 17.
4
Hyperelastic anisotropic microplane constitutive model for annulus fibrosus.
J Biomech Eng. 2007 Oct;129(5):632-41. doi: 10.1115/1.2768378.
5
Wrinkling instabilities for biologically relevant fiber-reinforced composite materials with a case study of Neo-Hookean/Ogden-Gasser-Holzapfel bilayer.
Biomech Model Mechanobiol. 2020 Dec;19(6):2375-2395. doi: 10.1007/s10237-020-01345-0. Epub 2020 Jun 13.
6
Stiffening by fiber reinforcement in soft materials: a hyperelastic theory at large strains and its application.
J Mech Behav Biomed Mater. 2011 Oct;4(7):1359-68. doi: 10.1016/j.jmbbm.2011.05.006. Epub 2011 May 8.
8
Crimped fiber composites: mechanics of a finite-length crimped fiber embedded in a soft matrix.
Biomech Model Mechanobiol. 2023 Jun;22(3):1083-1094. doi: 10.1007/s10237-023-01702-9. Epub 2023 Mar 2.
9
Anisotropic hyperelastic behavior of soft biological tissues.
Comput Methods Biomech Biomed Engin. 2015;18(13):1436-44. doi: 10.1080/10255842.2014.915082. Epub 2014 Aug 15.
10
A continuum model and simulations for large deformation of anisotropic fiber-matrix composites for cardiac tissue engineering.
J Mech Behav Biomed Mater. 2021 Sep;121:104627. doi: 10.1016/j.jmbbm.2021.104627. Epub 2021 Jun 7.

引用本文的文献

本文引用的文献

2
Changes in the structure-function relationship of elastin and its impact on the proximal pulmonary arterial mechanics of hypertensive calves.
Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1451-9. doi: 10.1152/ajpheart.00127.2008. Epub 2008 Jul 25.
3
Hyperelastic modelling of arterial layers with distributed collagen fibre orientations.
J R Soc Interface. 2006 Feb 22;3(6):15-35. doi: 10.1098/rsif.2005.0073.
4
A strain energy function for arteries accounting for wall composition and structure.
J Biomech. 2004 Jul;37(7):989-1000. doi: 10.1016/j.jbiomech.2003.11.026.
5
The ultrastructure of collagen in skin, scars and keloids.
Plast Reconstr Surg Transplant Bull. 1961 Jun;27:597-607. doi: 10.1097/00006534-196106000-00003.
6
Elastic proteins: biological roles and mechanical properties.
Philos Trans R Soc Lond B Biol Sci. 2002 Feb 28;357(1418):121-32. doi: 10.1098/rstb.2001.1022.
8
Distribution map of collagen fiber orientation in a whole calf skin.
Anat Rec. 1999 Jan;254(1):147-52. doi: 10.1002/(SICI)1097-0185(19990101)254:1<147::AID-AR18>3.0.CO;2-I.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验