Suppr超能文献

分子动力学研究液-液界面纳米颗粒稳定性:纳米颗粒-溶剂相互作用和毛细波的影响。

Molecular dynamics study of nanoparticle stability at liquid interfaces: effect of nanoparticle-solvent interaction and capillary waves.

机构信息

Department of Chemistry, University of Warwick, Coventry, United Kingdom.

出版信息

J Chem Phys. 2011 Aug 7;135(5):054704. doi: 10.1063/1.3618553.

Abstract

While the interaction of colloidal particles (sizes in excess of 100 nm) with liquid interfaces may be understood in terms of continuum models, which are grounded in macroscopic properties such as surface and line tensions, the behaviour of nanoparticles at liquid interfaces may be more complex. Recent simulations [D. L. Cheung and S. A. F. Bon, Phys. Rev. Lett. 102, 066103 (2009)] of nanoparticles at an idealised liquid-liquid interface showed that the nanoparticle-interface interaction range was larger than expected due, in part, to the action of thermal capillary waves. In this paper, molecular dynamics simulations of a Lennard-Jones nanoparticle in a binary Lennard-Jones mixture are used to confirm that these previous results hold for more realistic models. Furthermore by including attractive interactions between the nanoparticle and the solvent, it is found that the detachment energy decreases as the nanoparticle-solvent attraction increases. Comparison between the simulation results and recent theoretical predictions [H. Lehle and M. Oettel, J. Phys. Condens. Matter 20, 404224 (2008)] shows that for small particles the incorporation of capillary waves into the predicted effective nanoparticle-interface interaction improves agreement between simulation and theory.

摘要

虽然胶体颗粒(大于 100nm 大小)与液体界面的相互作用可以用基于表面张力和线张力等宏观性质的连续体模型来理解,但纳米颗粒在液体界面上的行为可能更为复杂。最近的模拟[D.L.Cheung 和 S.A.F.Bon,Phys.Rev.Lett.102,066103(2009)]表明,由于热毛细波的作用,纳米颗粒与理想液体-液体界面的相互作用范围大于预期。在本文中,使用分子动力学模拟研究了二元 Lennard-Jones 混合物中的 Lennard-Jones 纳米颗粒,证实了这些先前的结果适用于更现实的模型。此外,通过在纳米颗粒和溶剂之间引入吸引力相互作用,发现纳米颗粒与溶剂的脱附能随着吸引力的增加而降低。模拟结果与最近的理论预测[H.Lehle 和 M.Oettel,J.Phys.Condens.Matter 20,404224(2008)]的比较表明,对于小颗粒,将毛细波纳入预测的有效纳米颗粒-界面相互作用中,可以提高模拟与理论之间的一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验