Suppr超能文献

Magneto-elastic interaction in cubic helimagnets with B20 structure.

作者信息

Maleyev S V

机构信息

Petersburg Nuclear Physics Institute, Gatchina, St Petersburg 188300, Russia.

出版信息

J Phys Condens Matter. 2009 Apr 8;21(14):146001. doi: 10.1088/0953-8984/21/14/146001. Epub 2009 Mar 9.

Abstract

The magneto-elastic interaction in cubic helimagnets with B 20 symmetry is considered. It is shown that this interaction is responsible for a negative contribution to the square of the spin-wave gap Δ and it alone appears to disrupt the assumed helical structure. It is suggested that competition between the positive part of Δ(I)(2), which stems from magnon-magnon interaction, and its negative magneto-elastic part leads to the quantum phase transition observed at high pressure in MnSi and FeGe. This transition has to occur when [Formula: see text]. For MnSi it was shown using rough estimations that at ambient pressure both parts Δ(I) and |Δ(ME)| are comparable with the experimentally observed gap. The magneto-elastic interaction is responsible for 2k modulation of the lattice where k is the helix wavevector and contributes to the magnetic anisotropy. Properties of the magnetic state above the quantum phase transition are also discussed. Experimental observation of the lattice modulation by x-ray and neutron scattering allows the determination of the strength of the anisotropic part of the magneto-elastic interaction responsible for the above phenomena and the lattice helicity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验