Pouthier Vincent
Institut UTINAM, UMR CNRS 6213, Université de Franche-Comté, F-25030 Besançon Cedex, France.
J Phys Condens Matter. 2009 May 6;21(18):185404. doi: 10.1088/0953-8984/21/18/185404. Epub 2009 Apr 6.
A time-convolutionless master equation is established for describing the transport properties of amide-I vibrons coupled with acoustic phonons in a lattice of H-bonded peptide units. Within the non-adiabatic weak coupling limit, it is shown that the vibron dynamics strongly depends on the nature of the phonons and two distinct mechanisms have been identified. Harmonic phonons, which support spatial correlations over an infinite length scale, induce a fast dephasing-rephasing mechanism in the short time limit. Consequently, the vibron keeps its wavelike nature and a coherent vibrational energy flow takes place whatever the temperature. By contrast, anharmonic phonons carry spatial correlations over a finite length scale, only. As a result, the rephasing process no longer compensates the dephasing mechanism so that dephasing-limited band motion occurs. It gives rise to the incoherent diffusion of the vibron characterized by a diffusion coefficient whose temperature dependence scales as 1/T(α). In the weak anharmonicity limit, the exponent α is about 2. It becomes smaller than unity in the strong anharmonicity limit, indicating that the diffusion coefficient behaves as a slowly decaying function of the temperature.
建立了一个无时间卷积主方程,用于描述氢键肽单元晶格中与声子耦合的酰胺-I振子的输运性质。在非绝热弱耦合极限下,结果表明振子动力学强烈依赖于声子的性质,并且已经确定了两种不同的机制。支持无限长度尺度上空间相关性的简谐声子,在短时间极限内诱导出快速的退相-再相机制。因此无论温度如何,振子都保持其波动性质并发生相干振动能量流。相比之下,非简谐声子仅在有限长度尺度上携带空间相关性。结果,再相过程不再补偿退相机制,从而发生退相限制的能带运动。这导致振子的非相干扩散,其特征在于扩散系数,其温度依赖性按1/T(α)缩放。在弱非谐性极限下,指数α约为2。在强非谐性极限下它变得小于1,表明扩散系数表现为温度的缓慢衰减函数。