Suppr超能文献

多铁性材料的第一性原理研究。

First principles studies of multiferroic materials.

作者信息

Picozzi Silvia, Ederer Claude

机构信息

Consiglio Nazionale delle Ricerche-Istituto Nazionale per la Fisica della Materia (CNR-INFM), CASTI Regional Laboratory, 67100 L'Aquila, Italy.

出版信息

J Phys Condens Matter. 2009 Jul 29;21(30):303201. doi: 10.1088/0953-8984/21/30/303201. Epub 2009 Jul 10.

Abstract

Multiferroics, materials where spontaneous long-range magnetic and dipolar orders coexist, represent an attractive class of compounds, which combine rich and fascinating fundamental physics with a technologically appealing potential for applications in the general area of spintronics. Ab initio calculations have significantly contributed to recent progress in this area, by elucidating different mechanisms for multiferroicity and providing essential information on various compounds where these effects are manifestly at play. In particular, here we present examples of density-functional theory investigations for two main classes of materials: (a) multiferroics where ferroelectricity is driven by hybridization or purely structural effects, with BiFeO(3) as the prototype material, and (b) multiferroics where ferroelectricity is driven by correlation effects and is strongly linked to electronic degrees of freedom such as spin-, charge-, or orbital-ordering, with rare-earth manganites as prototypes. As for the first class of multiferroics, first principles calculations are shown to provide an accurate qualitative and quantitative description of the physics in BiFeO(3), ranging from the prediction of large ferroelectric polarization and weak ferromagnetism, over the effect of epitaxial strain, to the identification of possible scenarios for coupling between ferroelectric and magnetic order. For the second class of multiferroics, ab initio calculations have shown that, in those cases where spin-ordering breaks inversion symmetry (e.g. in antiferromagnetic E-type HoMnO(3)), the magnetically induced ferroelectric polarization can be as large as a few µC cm(-2). The examples presented point the way to several possible avenues for future research: on the technological side, first principles simulations can contribute to a rational materials design, aimed at identifying spintronic materials that exhibit ferromagnetism and ferroelectricity at or above room temperature. On the fundamental side, ab initio approaches can be used to explore new mechanisms for ferroelectricity by exploiting electronic correlations that are at play in transition metal oxides, and by suggesting ways to maximize the strength of these effects as well as the corresponding ordering temperatures.

摘要

多铁性材料是指自发长程磁序和偶极序共存的材料,是一类引人注目的化合物,它将丰富迷人的基础物理与自旋电子学一般领域中具有技术吸引力的应用潜力结合在一起。从头算计算通过阐明多铁性的不同机制并提供有关这些效应明显起作用的各种化合物的基本信息,为该领域的近期进展做出了重大贡献。特别是,在这里我们展示了针对两类主要材料的密度泛函理论研究示例:(a) 铁电由杂化或纯结构效应驱动的多铁性材料,以 BiFeO(3) 为原型材料;(b) 铁电由关联效应驱动且与自旋、电荷或轨道有序等电子自由度紧密相关的多铁性材料,以稀土锰酸盐为原型。对于第一类多铁性材料,第一性原理计算表明能够对 BiFeO(3) 中的物理现象提供准确的定性和定量描述,范围从大铁电极化和弱铁磁性的预测、外延应变的影响,到铁电和磁序之间耦合的可能情况的识别。对于第二类多铁性材料,从头算计算表明,在那些自旋有序破坏反演对称性的情况下(例如在反铁磁 E 型 HoMnO(3) 中),磁诱导的铁电极化可达几 µC cm(-2)。所展示的示例为未来研究指出了几条可能的途径:在技术方面,第一性原理模拟有助于进行合理的材料设计,旨在识别在室温或高于室温时表现出铁磁性和铁电性的自旋电子材料。在基础方面,从头算方法可用于通过利用过渡金属氧化物中起作用的电子关联来探索铁电的新机制,并通过提出最大化这些效应的强度以及相应有序温度的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验