Allouche A, Wiltner A, Linsmeier Ch
Physique des Interactions Ioniques et Moléculaires, CNRS and Université de Provence (UMR6633), Campus Scientifique de Saint Jérôme, service 242, 13397 Marseille Cedex 20, France.
J Phys Condens Matter. 2009 Sep 2;21(35):355011. doi: 10.1088/0953-8984/21/35/355011. Epub 2009 Aug 11.
Beryllium, tungsten and carbon are planned as wall-cladding materials for the future international tokamak ITER. Be and W will be the dominant components and therefore the formation of binary Be-W alloys under plasma action is one of the most important issues in plasma-wall interaction processes at the first wall. This paper proposes a first-principles density functional theory (DFT) study of beryllium atom retention in tungsten, and a discussion of the results in relation to the available experimental data. In a first step, the beryllium adsorption energy is calculated on the W(100) and W(111) surfaces. Further, the activation barrier for the surface-subsurface diffusion step and subsequent bulk diffusion steps are considered. For each calculation, the electronic structure of the formed compound is analyzed through projected density of states (DOS) calculations.
铍、钨和碳被规划为未来国际热核聚变实验堆(ITER)的壁面覆层材料。铍和钨将是主要成分,因此在等离子体作用下形成二元铍 - 钨合金是第一壁面等离子体 - 壁面相互作用过程中最重要的问题之一。本文提出了一项关于钨中铍原子滞留的第一性原理密度泛函理论(DFT)研究,并结合现有实验数据对结果进行讨论。第一步,计算铍在W(100)和W(111)表面的吸附能。此外,还考虑了表面 - 次表面扩散步骤及随后的体扩散步骤的活化能垒。对于每次计算,通过投影态密度(DOS)计算分析所形成化合物的电子结构。