Rodríguez-Carmona Escarlata, Villaverde Antonio, García-Fruitós Elena
Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain.
Bioeng Bugs. 2011 Jul-Aug;2(4):222-5. doi: 10.4161/bbug.2.4.15778. Epub 2011 Jul 1.
Recombinant proteins and other materials of industrial interest produced in Escherichia coli are usually retained within the bacterial cell, in the cytoplasmic space, where they have been produced. Different protocols for cell disruption have been implemented as an initial downstream step, which keeps the biological and mechanical properties of the process products. Being necessarily mild, these approaches often result in 95-99% cell disruption, what is more than acceptable from the yield point of view. However, when the bacterial product are nano or microparticulate entities that tend to co-sediment with entire bacterial cells, the remaining undisrupted bacteria appear as abounding contaminants, making the product not suitable for a spectrum of biomedical applications. Since bacterial inclusion bodies are now seen as bacterial materials valuable in different fields, we have developed an alternative cell disruption protocol that permits obtaining fully bacterial free protein particles, keeping the conformational status of the embedded proteins and the mechanical properties of the full aggregates.
在大肠杆菌中产生的具有工业价值的重组蛋白和其他物质通常保留在细菌细胞内,即它们产生的细胞质空间中。作为下游的初始步骤,已经实施了不同的细胞破碎方案,这些方案保持了过程产物的生物学和机械性能。由于这些方法必须温和,它们通常会导致95% - 99%的细胞破碎,从产量的角度来看这是完全可以接受的。然而,当细菌产物是倾向于与整个细菌细胞共同沉淀的纳米或微粒实体时,剩余未破碎的细菌会成为大量污染物,使得该产物不适用于一系列生物医学应用。由于细菌包涵体现在被视为在不同领域有价值的细菌材料,我们开发了一种替代的细胞破碎方案,该方案能够获得完全不含细菌的蛋白质颗粒,同时保持嵌入蛋白的构象状态和完整聚集体的机械性能。