Systems Biology Centre, University of Warwick, Coventry, United Kingdom.
PLoS Comput Biol. 2011 Aug;7(8):e1002076. doi: 10.1371/journal.pcbi.1002076. Epub 2011 Aug 4.
Immune synapses formed by T and NK cells both show segregation of the integrin ICAM1 from other proteins such as CD2 (T cell) or KIR (NK cell). However, the mechanism by which these proteins segregate remains unclear; one key hypothesis is a redistribution based on protein size. Simulations of this mechanism qualitatively reproduce observed segregation patterns, but only in certain parameter regimes. Verifying that these parameter constraints in fact hold has not been possible to date, this requiring a quantitative coupling of theory to experimental data. Here, we address this challenge, developing a new methodology for analysing and quantifying image data and its integration with biophysical models. Specifically we fit a binding kinetics model to 2 colour fluorescence data for cytoskeleton independent synapses (2 and 3D) and test whether the observed inverse correlation between fluorophores conforms to size dependent exclusion, and further, whether patterned states are predicted when model parameters are estimated on individual synapses. All synapses analysed satisfy these conditions demonstrating that the mechanisms of protein redistribution have identifiable signatures in their spatial patterns. We conclude that energy processes implicit in protein size based segregation can drive the patternation observed in individual synapses, at least for the specific examples tested, such that no additional processes need to be invoked. This implies that biophysical processes within the membrane interface have a crucial impact on cell:cell communication and cell signalling, governing protein interactions and protein aggregation.
T 细胞和 NK 细胞形成的免疫突触都显示整合素 ICAM1 与其他蛋白质(如 T 细胞上的 CD2 或 NK 细胞上的 KIR)分离。然而,这些蛋白质分离的机制尚不清楚;一个关键假设是基于蛋白质大小的重新分布。该机制的模拟定性地再现了观察到的分离模式,但仅在某些参数范围内。迄今为止,尚未能够验证这些参数约束实际上成立,这需要将理论与实验数据进行定量耦合。在这里,我们解决了这一挑战,开发了一种新的方法来分析和量化图像数据,并将其与生物物理模型集成。具体来说,我们将结合动力学模型拟合到 2 种颜色的荧光数据(2D 和 3D),以检测荧光团之间的观察到的逆相关是否符合尺寸相关的排斥,并进一步检测在个体突触上估计模型参数时是否预测了图案状态。所有分析的突触都满足这些条件,表明蛋白质再分配的机制在其空间模式中有可识别的特征。我们得出结论,基于蛋白质大小的能量过程可以驱动单个突触中观察到的图案形成,至少对于测试的特定示例是如此,因此不需要调用其他过程。这意味着膜界面内的生物物理过程对细胞间通讯和细胞信号转导具有至关重要的影响,控制着蛋白质相互作用和蛋白质聚集。