Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
PLoS One. 2011;6(7):e22209. doi: 10.1371/journal.pone.0022209. Epub 2011 Jul 29.
Telomeric heterochromatin assembly in budding yeast propagates through the association of Silent Information Regulator (SIR) proteins with nucleosomes, and the nucleosome array has been assumed to fold into a compacted structure. It is believed that the level of compaction and gene repression within heterochromatic regions can be modulated by histone modifications, such as acetylation of H3 lysine 56 and H4 lysine 16, and monoubiquitylation of H2B lysine 123. However, it remains unclear as to whether or not gene silencing is a direct consequence of the compaction of chromatin. Here, by investigating the role of the carboxy-terminus of histone H2B in heterochromatin formation, we identify that the disorderly compaction of chromatin induced by a mutation at H2B T122 specifically hinders telomeric heterochromatin formation. H2B T122 is positioned within the highly conserved AVTKY motif of the αC helix of H2B. Heterochromatin containing the T122E substitution in H2B remains inaccessible to ectopic dam methylase with dramatically increased mobility in sucrose gradients, indicating a compacted chromatin structure. Genetic studies indicate that this unique phenotype is independent of H2B K123 ubiquitylation and Sir4. In addition, using ChIP analysis, we demonstrate that telomere structure in the mutant is further disrupted by a defect in Sir2/Sir3 binding and the resulting invasion of euchromatic histone marks. Thus, we have revealed that the compaction of chromatin per se is not sufficient for heterochromatin formation. Instead, these results suggest that an appropriately arrayed chromatin mediated by H2B C-terminus is required for SIR binding and the subsequent formation of telomeric chromatin in yeast, thereby identifying an intrinsic property of the nucleosome that is required for the establishment of telomeric heterochromatin. This requirement is also likely to exist in higher eukaryotes, as the AVTKY motif of H2B is evolutionarily conserved.
端粒异染色质在芽殖酵母中的组装通过沉默信息调节因子(SIR)蛋白与核小体的结合来进行,并且核小体阵列被假定折叠成一种紧凑的结构。人们认为,异染色质区域内的紧凑程度和基因抑制可以通过组蛋白修饰来调节,例如 H3 赖氨酸 56 和 H4 赖氨酸 16 的乙酰化以及 H2B 赖氨酸 123 的单泛素化。然而,基因沉默是否是染色质紧凑的直接结果尚不清楚。在这里,通过研究组蛋白 H2B 羧基末端在异染色质形成中的作用,我们确定 H2B T122 突变引起的染色质无序紧凑特别阻碍端粒异染色质的形成。H2B T122 位于 H2B 的αC 螺旋高度保守的 AVTKY 基序内。含有 H2B T122E 取代的异染色质仍然无法与异位 dam 甲基酶结合,在蔗糖梯度中的迁移率显著增加,表明染色质结构紧凑。遗传研究表明,这种独特的表型独立于 H2B K123 泛素化和 Sir4。此外,使用 ChIP 分析,我们证明突变体中的端粒结构由于 Sir2/Sir3 结合的缺陷和随后 euchromatic 组蛋白标记的入侵而进一步受到破坏。因此,我们已经揭示了染色质本身的紧凑程度不足以形成异染色质。相反,这些结果表明,通过 H2B C 末端介导的适当排列的染色质是 SIR 结合和随后在酵母中形成端粒染色质所必需的,从而确定了核小体的内在性质,这对于建立端粒异染色质是必需的。这种需求在高等真核生物中也可能存在,因为 H2B 的 AVTKY 基序在进化上是保守的。