Suppr超能文献

描述性信息和经验对自动化依赖的影响。

Effect of descriptive information and experience on automation reliance.

机构信息

Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa 32000, Israel.

出版信息

Hum Factors. 2011 Jun;53(3):230-44. doi: 10.1177/0018720811406725.

Abstract

OBJECTIVE

The present research addresses the issue of reliance on decision support systems for the long-term (DSSLT), which help users develop decision-making strategies and long-term planning. It is argued that providing information about a system's future performance in an experiential manner, as compared with a descriptive manner, encourages users to increase their reliance level.

BACKGROUND

Establishing appropriate reliance on DSSLT is contingent on the system developer's ability to provide users with information about the system's future performance.

METHOD

A sequence of three studies contrasts the effect on automation reliance of providing descriptive information versus experience for DSSLT with two different positive expected values of recommendations.

RESULTS

Study I demonstrated that when automation reliance was determined solely on the basis of description, it was relatively low, but it increased significantly when a decision was made after experience with 50 training simulations. Participants were able to learn to increase their automation reliance levels when they encountered the same type of recommendation again. Study 2 showed that the absence of preliminary descriptive information did not affect the automation reliance levels obtained after experience. Study 3 demonstrated that participants were able to generalize their learning about increasing reliance levels to new recommendations.

CONCLUSION

Using experience rather than description to give users information about future performance in DSSLT can help increase automation reliance levels.

APPLICATIONS

Implications for designing DSSLT and decision support systems in general are discussed.

摘要

目的

本研究探讨了长期依赖决策支持系统(DSSLT)的问题,该系统有助于用户制定决策策略和长期规划。有人认为,以体验的方式而不是描述的方式提供有关系统未来性能的信息,可以鼓励用户提高其依赖程度。

背景

要在 DSSLT 上建立适当的依赖关系,取决于系统开发人员为用户提供有关系统未来性能信息的能力。

方法

一系列三项研究比较了在两种不同的推荐正预期值下,提供描述性信息与体验对自动化依赖的影响。

结果

研究一表明,当仅根据描述来确定自动化依赖程度时,它相对较低,但在经历了 50 次培训模拟后做出决定时,它会显著增加。当再次遇到相同类型的推荐时,参与者能够学会增加他们的自动化依赖水平。研究二表明,在没有初步描述性信息的情况下,体验后获得的自动化依赖水平不受影响。研究三表明,参与者能够将其关于增加依赖水平的学习推广到新的推荐中。

结论

在 DSSLT 中使用体验而不是描述来为用户提供有关未来性能的信息,可以帮助提高自动化依赖程度。

应用

讨论了设计 DSSLT 和一般决策支持系统的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验