Suppr超能文献

比例非劣效性试验的贝叶斯方法。

Bayesian approach to noninferiority trials for proportions.

作者信息

Gamalo Mark A, Wu Rui, Tiwari Ram C

机构信息

Office of Biostatistics, Food and Drug Administration, Silver Spring 20993-0002, USA.

出版信息

J Biopharm Stat. 2011 Sep;21(5):902-19. doi: 10.1080/10543406.2011.589646.

Abstract

Noninferiority trials are unique because they are dependent upon historical information in order to make meaningful interpretation of their results. Hence, a direct application of the Bayesian paradigm in sequential learning becomes apparently useful in the analysis. This paper describes a Bayesian procedure for testing noninferiority in two-arm studies with a binary primary endpoint that allows the incorporation of historical data on an active control via the use of informative priors. In particular, the posteriors of the response in historical trials are assumed as priors for its corresponding parameters in the current trial, where that treatment serves as the active control. The Bayesian procedure includes a fully Bayesian method and two normal approximation methods on the prior and/or on the posterior distributions. Then a common Bayesian decision criterion is used but with two prespecified cutoff levels, one for the approximation methods and the other for the fully Bayesian method, to determine whether the experimental treatment is noninferior to the active control. This criterion is evaluated and compared with the frequentist method using simulation studies in keeping with regulatory framework that new methods must protect type I error and arrive at a similar conclusion with existing standard strategies. Results show that both methods arrive at comparable conclusions of noninferiority when applied to a modified real data set. The advantage of the proposed Bayesian approach lies in its ability to provide posterior probabilities for effect sizes of the experimental treatment over the active control.

摘要

非劣效性试验具有独特性,因为它们依赖历史信息来对结果进行有意义的解读。因此,贝叶斯范式在序贯学习中的直接应用在分析中显然很有用。本文描述了一种用于双臂研究中检验非劣效性的贝叶斯程序,该研究具有二元主要终点,通过使用信息先验允许纳入活性对照的历史数据。具体而言,历史试验中反应的后验分布被假定为当前试验中其相应参数的先验分布,其中该治疗作为活性对照。贝叶斯程序包括一种完全贝叶斯方法以及两种在先验分布和/或后验分布上的正态近似方法。然后使用一个通用的贝叶斯决策标准,但有两个预先指定的截止水平,一个用于近似方法,另一个用于完全贝叶斯方法,以确定试验治疗是否不劣于活性对照。根据新方法必须保护I型错误并与现有标准策略得出类似结论的监管框架,通过模拟研究对该标准进行评估并与频率学派方法进行比较。结果表明,当应用于修改后的真实数据集时,两种方法得出的非劣效性结论相当。所提出的贝叶斯方法的优势在于它能够为试验治疗相对于活性对照的效应大小提供后验概率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验