Suppr超能文献

体相、单分散、随机球堆积扩散迂曲度的结构-输运相关性。

Structure-transport correlation for the diffusive tortuosity of bulk, monodisperse, random sphere packings.

机构信息

Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany.

出版信息

J Chromatogr A. 2011 Sep 16;1218(37):6489-97. doi: 10.1016/j.chroma.2011.07.066. Epub 2011 Jul 24.

Abstract

The mass transport properties of bulk random sphere packings depend primarily on the bed (external) porosity ε, but also on the packing microstructure. We investigate the influence of the packing microstructure on the diffusive tortuosity τ=D(m)/D(eff), which relates the bulk diffusion coefficient (D(m)) to the effective (asymptotic) diffusion coefficient in a porous medium (D(eff)), by numerical simulations of diffusion in a set of computer-generated, monodisperse, hard-sphere packings. Variation of packing generation algorithm and protocol yielded four Jodrey-Tory and two Monte Carlo packing types with systematically varied degrees of microstructural heterogeneity in the range between the random-close and the random-loose packing limit (ε=0.366-0.46). The distinctive tortuosity-porosity scaling of the packing types is influenced by the extent to which the structural environment of individual pores varies in a packing, and to quantify this influence we propose a measure based on Delaunay tessellation. We demonstrate that the ratio of the minimum to the maximum void face area of a Delaunay tetrahedron around a pore between four adjacent spheres, (A(min)/A(max))(D), is a measure for the structural heterogeneity in the direct environment of this pore, and that the standard deviation σ of the (A(min)/A(max))(D)-distribution considering all pores in a packing mimics the tortuosity-porosity scaling of the generated packing types. Thus, σ(A(min)/A(max))(D) provides a structure-transport correlation for diffusion in bulk, monodisperse, random sphere packings.

摘要

体相无规球填料的质量输运性质主要取决于床层(外部)孔隙率 ε,但也取决于填料的微观结构。我们通过数值模拟研究了填料微观结构对扩散迂曲度 τ=D(m)/D(eff)的影响,其中 D(m)是体相扩散系数,D(eff)是多孔介质中的有效(渐近)扩散系数。我们模拟了在一组计算机生成的、单分散的硬球填料中扩散。通过改变填料生成算法和方案,得到了四种 Jodrey-Tory 和两种 Monte Carlo 填料类型,其微观结构异质性程度在无规密堆积和无规松堆积极限(ε=0.366-0.46)之间呈系统变化。填料类型的独特迂曲度-孔隙率标度受单个孔隙在填料中结构环境变化程度的影响,为了量化这种影响,我们提出了一种基于 Delaunay 剖分的度量方法。我们证明了在四个相邻球体之间的一个孔隙的 Delaunay 四面体的最小和最大空面面积比 (A(min)/A(max))(D)是该孔隙直接环境结构异质性的度量,并且考虑到填料中所有孔隙的 (A(min)/A(max))(D)分布的标准偏差 σ 模拟了生成的填料类型的迂曲度-孔隙率标度。因此,σ(A(min)/A(max))(D)为体相单分散无规球填料中的扩散提供了结构-输运相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验