Suppr超能文献

基于掺杂 Ni 的 SnO₂纳米结构材料的高灵敏度乙醇化学传感器。

Highly sensitive ethanol chemical sensor based on Ni-doped SnO₂ nanostructure materials.

机构信息

Center for Advanced Materials and Nano-Engineering and Department of Chemistry, Faculty of Sciences and Arts, Najran University, PO Box 1988, Najran 11001, Saudi Arabia.

出版信息

Biosens Bioelectron. 2011 Oct 15;28(1):127-34. doi: 10.1016/j.bios.2011.07.024. Epub 2011 Jul 20.

Abstract

Due to potential applications of semiconductor transition doped nanostructure materials and the important advantages of synthesis in cost-effective and environmental concerns, a significant effort has been consummated for improvement of Ni-doped SnO(2) nanomaterials using hydrothermal technique at room conditions. The structural and optical properties of the low-dimensional (average diameter, 52.4 nm) Ni-doped SnO(2) nanostructures were demonstrated using various conventional techniques such as UV/visible spectroscopy, FT-IR spectroscopy, X-ray powder diffraction (XRD), and Field-emission scanning electron microscopy (FE-SEM). The calcined doped material is an attractive semiconductor nanoparticle for accomplishment in chemical sensing by simple I-V technique, where toxic chemical (ethanol) is used as a target chemical. Thin-film of Ni-doped SnO(2) nanostructure materials with conducting coating agents on silver electrodes (AgE, surface area, 0.0216 cm(2)) revealed higher sensitivity and repeatability. The calibration plot is linear (R, 0.8440) over the large dynamic range (1.0 nM-1.0 mM), where the sensitivity is approximately 2.3148 μA cm(-2) mM(-1) with a detection limit of 0.6 nM, based on signal/noise ratio in short response time. Consequently on the basis of the sensitive communication among structures, morphologies, and properties, it is exemplified that the morphologies and the optical characteristics can be extended to a large scale in doping nanomaterials and proficient chemical sensors applications.

摘要

由于半导体过渡掺杂纳米结构材料的潜在应用以及在成本效益和环境关注方面的重要优势,人们已经投入了大量精力,通过水热技术在室温条件下改进掺镍二氧化锡(Ni-doped SnO(2))纳米材料。使用各种常规技术,如紫外/可见分光光度法、傅里叶变换红外光谱法、X 射线粉末衍射(XRD)和场发射扫描电子显微镜(FE-SEM),研究了低维(平均直径为 52.4nm)掺镍二氧化锡(Ni-doped SnO(2))纳米结构的结构和光学性质。煅烧后的掺杂材料是一种有吸引力的半导体纳米颗粒,可通过简单的 I-V 技术实现化学传感,其中使用有毒化学物质(乙醇)作为目标化学物质。在银电极(AgE,表面积为 0.0216cm(2))上涂有导电涂层剂的掺镍二氧化锡(Ni-doped SnO(2))纳米结构材料薄膜显示出更高的灵敏度和可重复性。校准曲线在大动态范围内(1.0nM-1.0mM)呈线性(R,0.8440),灵敏度约为 2.3148μAcm(-2)mM(-1),检测限为 0.6nM,基于短响应时间的信噪比。因此,基于结构、形态和性能之间的敏感通信,可以将形态和光学特性扩展到掺杂纳米材料和高效化学传感器应用的大规模。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验