Suppr超能文献

跳狐猴的非凡运动表现。

The extraordinary athletic performance of leaping gibbons.

机构信息

Department of Musculoskeletal Biology II, University of Liverpool, Liverpool, UK.

出版信息

Biol Lett. 2012 Feb 23;8(1):46-9. doi: 10.1098/rsbl.2011.0574. Epub 2011 Aug 10.

Abstract

The distance that animals leap depends on their take-off angle and velocity. The velocity is generated solely by mechanical work during the push-off phase of standing-start leaps. Gibbons are capable of exceptional leaping performance, crossing gaps in the forest canopy exceeding 10 m, yet possess none of the adaptations possessed by specialist leapers synonymous with maximizing mechanical work. To understand this impressive performance, we recorded leaps of the gibbons exceeding 3.7 m. Gibbons perform more mass-specific work (35.4 J kg(-1)) than reported for any other species to date, accelerating to 8.3 ms(-1) in a single movement and redefining our estimates of work performance by animals. This energy (enough for a 3.5 m vertical leap) is 60 per cent higher than that achieved by galagos, which are renowned for their remarkable leaping performance. The gibbons' unusual morphology facilitates a division of labour among the hind limbs, forelimbs and trunk, resulting in modest power requirements compared with more specialized leapers.

摘要

动物跳跃的距离取决于它们的起跳角度和速度。速度仅由站立起跑跳跃的推离阶段的机械功产生。长臂猿具有出色的跳跃性能,能够跨越超过 10 米的森林树冠间隙,但它们没有任何与最大化机械功同义的专业跳跃者所拥有的适应性。为了理解这种令人印象深刻的性能,我们记录了超过 3.7 米的长臂猿跳跃。长臂猿比迄今为止报道的任何其他物种都进行更多的质量特定工作(35.4 J kg(-1)),在单次运动中加速到 8.3 ms(-1),重新定义了我们对动物工作性能的估计。这种能量(足以进行 3.5 米的垂直跳跃)比以出色的跳跃性能而闻名的夜猴高出 60%。长臂猿不寻常的形态促进了后肢、前肢和躯干之间的分工,与更专业的跳跃者相比,它们的功率需求较小。

相似文献

1
The extraordinary athletic performance of leaping gibbons.
Biol Lett. 2012 Feb 23;8(1):46-9. doi: 10.1098/rsbl.2011.0574. Epub 2011 Aug 10.
2
The biomechanics of leaping in gibbons.
Am J Phys Anthropol. 2010 Nov;143(3):403-16. doi: 10.1002/ajpa.21329.
3
The effect of substrate compliance on the biomechanics of gibbon leaps.
J Exp Biol. 2011 Feb 15;214(Pt 4):687-96. doi: 10.1242/jeb.046797.
4
Locomotion behavior of cao vit gibbon (Nomascus nasutus) living in karst forest in Bangliang Nature Reserve, Guangxi, China.
Integr Zool. 2013 Dec;8(4):356-64. doi: 10.1111/j.1749-4877.2012.00300.x. Epub 2012 Oct 31.
5
Comparative locomotor ecology of gibbons and macaques: selection of canopy elements for crossing gaps.
Am J Phys Anthropol. 1994 Apr;93(4):505-24. doi: 10.1002/ajpa.1330930409.
7
Mechanical constraints on the functional morphology of the gibbon hind limb.
J Anat. 2009 Oct;215(4):383-400. doi: 10.1111/j.1469-7580.2009.01123.x. Epub 2009 Jul 15.
9
Soprano singing in gibbons.
Am J Phys Anthropol. 2012 Nov;149(3):347-55. doi: 10.1002/ajpa.22124. Epub 2012 Aug 24.
10
Submaximal leaping in the grey mouse lemur.
Zoology (Jena). 2011 Sep;114(4):247-54. doi: 10.1016/j.zool.2011.03.004. Epub 2011 Jul 30.

引用本文的文献

4
The gibbon's Achilles tendon revisited: consequences for the evolution of the great apes?
Proc Biol Sci. 2018 Jun 13;285(1880). doi: 10.1098/rspb.2018.0859.
5
Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins.
Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):4134-4139. doi: 10.1073/pnas.1715120115. Epub 2018 Apr 2.
6
Markerless 3D motion capture for animal locomotion studies.
Biol Open. 2014 Jun 27;3(7):656-68. doi: 10.1242/bio.20148086.
7
Constraints on muscle performance provide a novel explanation for the scaling of posture in terrestrial animals.
Biol Lett. 2013 Jul 3;9(4):20130414. doi: 10.1098/rsbl.2013.0414. Print 2013 Aug 23.

本文引用的文献

1
Muscle moment arms and function of the siamang forelimb during brachiation.
J Anat. 2010 Nov;217(5):521-35. doi: 10.1111/j.1469-7580.2010.01272.x.
2
Muscle performance during frog jumping: influence of elasticity on muscle operating lengths.
Proc Biol Sci. 2010 May 22;277(1687):1523-30. doi: 10.1098/rspb.2009.2051. Epub 2010 Jan 27.
3
Mechanical constraints on the functional morphology of the gibbon hind limb.
J Anat. 2009 Oct;215(4):383-400. doi: 10.1111/j.1469-7580.2009.01123.x. Epub 2009 Jul 15.
4
The mechanisms that enable arm motion to enhance vertical jump performance-a simulation study.
J Biomech. 2008;41(9):1847-54. doi: 10.1016/j.jbiomech.2008.04.004. Epub 2008 Jun 2.
5
Vertical jumping performance of bonobo (Pan paniscus) suggests superior muscle properties.
Proc Biol Sci. 2006 Sep 7;273(1598):2177-84. doi: 10.1098/rspb.2006.3568.
6
Inertial properties of hominoid limb segments.
J Anat. 2006 Aug;209(2):201-18. doi: 10.1111/j.1469-7580.2006.00588.x.
8
Biomechanics: froghopper insects leap to new heights.
Nature. 2003 Jul 31;424(6948):509. doi: 10.1038/424509a.
9
Halteres used in ancient Olympic long jump.
Nature. 2002 Nov 14;420(6912):141-2. doi: 10.1038/420141a.
10
Built for jumping: the design of the frog muscular system.
Science. 1994 Jan 21;263(5145):370-2. doi: 10.1126/science.8278808.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验